
Bruce S Dien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coprocessing Corn Germ Meal for Oil Recovery and Ethanol Production: A Process Model for Lipid-Producing Energy Crops. Processes, 2022, 10, 661.	1.3	2
2	Near-Complete Genome Sequence of Zygosaccharomyces rouxii NRRL Y-64007, a Yeast Capable of Growing on Lignocellulosic Hydrolysates. Microbiology Resource Announcements, 2022, , e0005022.	0.3	0
3	Field Productivities of Napier Grass for Production of Sugars and Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 2052-2060.	3.2	12
4	Recycle of fermentation process water through mitigation of inhibitors in dilute-acid corn stover hydrolysate. Bioresource Technology Reports, 2020, 9, 100349.	1.5	6
5	Recoveries of Oil and Hydrolyzed Sugars from Corn Germ Meal by Hydrothermal Pretreatment: A Model Feedstock for Lipid-Producing Energy Crops. Energies, 2020, 13, 6022.	1.6	7
6	Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor. Biotechnology Progress, 2020, 36, e3059.	1.3	11
7	High solids loading biorefinery for the production of cellulosic sugars from bioenergy sorghum. Bioresource Technology, 2020, 318, 124051.	4.8	41
8	Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to \hat{l}^2 -carotene using an engineered Saccharomyces cerevisiae. Bioresource Technology, 2020, 308, 123275.	4.8	26
9	Economic Analysis of Cellulosic Ethanol Production from Sugarcane Bagasse Using a Sequential Deacetylation, Hot Water and Disk-Refining Pretreatment. Processes, 2019, 7, 642.	1.3	37
10	Sugar production from bioenergy sorghum by using pilot scale continuous hydrothermal pretreatment combined with disk refining. Bioresource Technology, 2019, 289, 121663.	4.8	42
11	Screening for Oily Yeasts Able to Convert Hydrolysates from Biomass to Biofuels While Maintaining Industrial Process Relevance. Methods in Molecular Biology, 2019, 1995, 249-283.	0.4	0
12	Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose, 2019, 26, 5959-5979.	2.4	84
13	Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast. Bioresource Technology, 2019, 282, 103-109.	4.8	55
14	The costs of sugar production from different feedstocks and processing technologies. Biofuels, Bioproducts and Biorefining, 2019, 13, 723-739.	1.9	48
15	Economics of plant oil recovery: A review. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101056.	1.5	32
16	Development of Near-Infrared Reflectance Spectroscopy (NIRS) Calibrations for Traits Related to Ethanol Conversion from Genetically Variable Napier Grass (Pennisetum purpureum Schum.). Bioenergy Research, 2019, 12, 34-42.	2.2	3
17	Fermentation of undetoxified sugarcane bagasse hydrolyzates using a two stage hydrothermal and mechanical refining pretreatment. Bioresource Technology, 2018, 261, 313-321.	4.8	62
18	Highâ€conversion hydrolysates and corn sweetener production in dryâ€grind corn process. Cereal Chemistry, 2018, 95, 302-311.	1.1	5

#	Article	IF	CITATIONS
19	Bioconversion of Pelletized Big Bluestem, Switchgrass, and Low-Diversity Grass Mixtures Into Sugars and Bioethanol. Frontiers in Energy Research, 2018, 6, .	1.2	14
20	Overexpression of the Sorghum bicolor SbCCoAOMT alters cell wall associated hydroxycinnamoyl groups. PLoS ONE, 2018, 13, e0204153.	1.1	25
21	Engineering Candida phangngensis—an oleaginous yeast from the Yarrowia clade—for enhanced detoxification of lignocellulose-derived inhibitors and lipid overproduction. FEMS Yeast Research, 2018, 18, .	1.1	22
22	A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate. Applied Microbiology and Biotechnology, 2017, 101, 3319-3334.	1.7	56
23	Impact of Harvest Time and Cultivar on Conversion of Switchgrass to Bio-oils Via Fast Pyrolysis. Bioenergy Research, 2017, 10, 388-399.	2.2	7
24	Impact of Harvest Time and Switchgrass Cultivar on Sugar Release Through Enzymatic Hydrolysis. Bioenergy Research, 2017, 10, 377-387.	2.2	17
25	Influence of genetic background of engineered xylose-fermenting industrial <i>Saccharomyces cerevisiae</i> strains for ethanol production from lignocellulosic hydrolysates. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1575-1588.	1.4	25
26	Switchgrass Biomass Composition Traits and their Effects on its Digestion by Ruminants and Bioconversion to Ethanol. Crop Science, 2017, 57, 275-281.	0.8	3
27	Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 2016, 113, 1676-1690.	1.7	110
28	Overexpression of <i>SbMyb60</i> impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in <i>Sorghum bicolor</i> . Plant Journal, 2016, 85, 378-395.	2.8	119
29	Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresource Technology, 2016, 216, 706-713.	4.8	80
30	Techniques for the Evolution of Robust Pentose-fermenting Yeast for Bioconversion of Lignocellulose to Ethanol. Journal of Visualized Experiments, 2016, , .	0.2	1
31	Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnology for Biofuels, 2016, 9, 97.	6.2	49
32	Cellulosic Butanol (ABE) Biofuel Production from Sweet Sorghum Bagasse (SSB): Impact of Hot Water Pretreatment and Solid Loadings on Fermentation Employing Clostridium beijerinckii P260. Bioenergy Research, 2016, 9, 1167-1179.	2.2	29
33	Miscanthus×giganteus xylooligosaccharides: Purification and fermentation. Carbohydrate Polymers, 2016, 140, 96-103.	5.1	33
34	In Vitro Fermentation of Xylooligosaccharides Produced from <i>Miscanthus</i> × <i><i>giganteus</i></i> by Human Fecal Microbiota. Journal of Agricultural and Food Chemistry, 2016, 64, 262-267.	2.4	25
35	Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Advances, 2016, 6, 20695-20705.	1.7	13
36	Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environmental Science, 2016, 3, 1-20.	0.7	35

#	Article	IF	CITATIONS
37	Improvement of Dryâ€Fractionation Ethanol Fermentation by Partial Germ Supplementation. Cereal Chemistry, 2015, 92, 218-223.	1.1	7
38	Designing Selection Criteria for Use of Reed Canarygrass as a Bioenergy Feedstock. Crop Science, 2015, 55, 2130-2137.	0.8	1
39	Isolation and characterization of unhydrolyzed oligosaccharides from switchgrass (Panicum) Tj ETQq1 1 0.784314 Carbohydrate Research, 2015, 407, 42-50.	4 rgBT /Ov 1.1	verlock 10 T 12
40	Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading. Biotechnology for Biofuels, 2015, 8, 60.	6.2	39
41	Microbial lipid production from AFEXâ,,¢ pretreated corn stover. RSC Advances, 2015, 5, 28725-28734.	1.7	26
42	Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 2015, 33, 43-54.	4.9	259
43	Bioenergy crops grown for hyperaccumulation of phosphorous in the Delmarva Peninsula and their biofuels potential. Journal of Environmental Management, 2015, 150, 39-47.	3.8	9
44	Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): Kinetics, characterization and recovery. Bioresource Technology, 2014, 155, 359-365.	4.8	69
45	Comparisons of five <scp> <i>S</i> </scp> <i>accharomyces cerevisiae</i> strains for ethanol production from SPORLâ€pretreated lodgepole pine. Biotechnology Progress, 2014, 30, 1076-1083.	1.3	17
46	Effect of harvest maturity on carbohydrates for ethanol production from sugar enhanced temperate×tropical maize hybrid. Industrial Crops and Products, 2014, 60, 266-272.	2.5	6
47	Structural characterization of (1→2)-β-xylose-(1→3)-α-arabinose-containing oligosaccharide products of extracted switchgrass (Panicum virgatum, L.) xylan after exhaustive enzymatic treatment with α-arabinofuranosidase and β-endo-xylanase. Carbohydrate Research, 2014, 398, 63-71.	1.1	17
48	Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels, 2013, 6, 84.	6.2	70
49	Use of tropical maize for bioethanol production. World Journal of Microbiology and Biotechnology, 2013, 29, 1509-1515.	1.7	24
50	Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without Detoxification. Industrial & Engineering Chemistry Research, 2013, 52, 16057-16065.	1.8	59
51	Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renewable Energy, 2013, 50, 833-839.	4.3	38
52	Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products, 2013, 44, 11-17.	2.5	67
53	Seashore mallow (Kosteletzkya pentacarpos) stems as a feedstock for biodegradable absorbents. Biomass and Bioenergy, 2013, 59, 300-305.	2.9	7
54	Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2013, 130, 603-612.	4.8	105

#	Article	IF	CITATIONS
55	Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates. Industrial Crops and Products, 2013, 49, 292-298.	2.5	25
56	High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresource Technology, 2013, 127, 291-297.	4.8	55
57	Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity. Environmental Technology (United Kingdom), 2013, 34, 1837-1848.	1.2	36
58	Biochemical processing of reed canarygrass into fuel ethanol. International Journal of Low-Carbon Technologies, 2012, 7, 338-347.	1.2	8
59	Influence of <i>Stenocarpella maydis</i> Infected Corn on the Composition of Corn Kernel and Its Conversion into Ethanol. Cereal Chemistry, 2012, 89, 15-23.	1.1	5
60	Plant cell walls to ethanol. Biochemical Journal, 2012, 442, 241-252.	1.7	173
61	Shaping Reactor Microbiomes to Produce the Fuel Precursor <i>n-</i> Butyrate from Pretreated Cellulosic Hydrolysates. Environmental Science & amp; Technology, 2012, 46, 10229-10238.	4.6	55
62	Comparative Analysis of End Point Enzymatic Digests of Arabino-Xylan Isolated from Switchgrass (Panicum virgatum L) of Varying Maturities using LC-MSn. Metabolites, 2012, 2, 959-982.	1.3	7
63	Temporal and Spatial Variation in Switchgrass Biomass Composition and Theoretical Ethanol Yield. Agronomy Journal, 2012, 104, 54-64.	0.9	42
64	Liquid chromatography–mass spectrometry investigation of enzyme-resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation. Bioresource Technology, 2012, 110, 437-447.	4.8	21
65	Prolonged conversion of <i>n</i> â€butyrate to <i>n</i> â€butanol with <i>Clostridium saccharoperbutylacetonicum</i> in a twoâ€stage continuous culture with inâ€situ product removal. Biotechnology and Bioengineering, 2012, 109, 913-921.	1.7	59
66	Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 439-447.	1.4	54
67	Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment. PLoS ONE, 2011, 6, e16416.	1.1	141
68	Conversion of starch from dry common beans (Phaseolus vulgaris L.) to ethanol. Industrial Crops and Products, 2011, 33, 644-647.	2.5	10
69	Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresource Technology, 2011, 102, 9579-9585.	4.8	45
70	Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1193-1202.	1.4	74
71	Ultrafiltration of Thin Stillage from Conventional and E-Mill Dry Grind Processes. Applied Biochemistry and Biotechnology, 2011, 164, 58-67.	1.4	7
72	Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review. Applied Biochemistry and Biotechnology, 2011, 164, 1405-1421.	1.4	156

#	Article	IF	CITATIONS
73	The Application of Ultrasound in the Enzymatic Hydrolysis of Switchgrass. Applied Biochemistry and Biotechnology, 2011, 165, 1322-1331.	1.4	36
74	Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses. Bioenergy Research, 2011, 4, 96-110.	2.2	122
75	Selective chemical oxidation and depolymerization of switchgrass (<i>Panicum virgatum</i> L.) xylan with oligosaccharide product analysis by mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 941-950.	0.7	17
76	Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 2011, 102, 6479-6486.	4.8	75
77	Microfiltration of thin stillage: Process simulation and economic analyses. Biomass and Bioenergy, 2011, 35, 113-120.	2.9	20
78	Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 2011, 48, 54-60.	1.6	436
79	Laboratory Yields and Process Stream Compositions from E-Mill and Dry-Grind Corn Processes Using a Granular Starch Hydrolyzing Enzyme. Cereal Chemistry, 2010, 87, 100-103.	1.1	2
80	Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Applied Microbiology and Biotechnology, 2010, 86, 1355-1365.	1.7	102
81	Effects of Forage Quality and Cell Wall Constituents of Bermuda Grass on Biochemical Conversion to Ethanol. Bioenergy Research, 2010, 3, 225-237.	2.2	21
82	Full-scale On-farm Pretreatment of Perennial Grasses with Dilute Acid for Fuel Ethanol Production. Bioenergy Research, 2010, 3, 335-341.	2.2	16
83	Production of butanol (a biofuel) from agricultural residues: Part II – Use of corn stover and switchgrass hydrolysatesâ~†. Biomass and Bioenergy, 2010, 34, 566-571.	2.9	271
84	Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysateâ~†. Biomass and Bioenergy, 2010, 34, 559-565.	2.9	324
85	Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage. Bioresource Technology, 2010, 101, 3859-3863.	4.8	14
86	Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresource Technology, 2010, 101, 5305-5314.	4.8	90
87	Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitorsâ~†. Bioresource Technology, 2010, 101, 7545-7550.	4.8	71
88	Effect of compositional variability of distillers' grains on cellulosic ethanol production. Bioresource Technology, 2010, 101, 5385-5393.	4.8	39
89	Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process. Bioresource Technology, 2010, 101, 6521-6527.	4.8	13
90	Inhibition of cellulases by phenols. Enzyme and Microbial Technology, 2010, 46, 170-176.	1.6	403

#	Article	IF	CITATIONS
91	Development of an Ethanol Yield Procedure for Dry-Grind Corn Processing. Cereal Chemistry, 2009, 86, 355-360.	1.1	19
92	Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid, 2009, 61, 22-38.	0.4	29
93	Thin stillage fractionation using ultrafiltration: resistance in series model. Bioprocess and Biosystems Engineering, 2009, 32, 225-233.	1.7	18
94	Improved Sugar Conversion and Ethanol Yield for Forage Sorghum (Sorghum bicolor L. Moench) Lines with Reduced Lignin Contents. Bioenergy Research, 2009, 2, 153-164.	2.2	198
95	Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production. Methods in Molecular Biology, 2009, 581, 263-280.	0.4	31
96	Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol. Applied Biochemistry and Biotechnology, 2008, 145, 13-21.	1.4	97
97	Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers' grains and their conversion to ethanol. Bioresource Technology, 2008, 99, 5216-5225.	4.8	144
98	Cellulose conversion in dry grind ethanol plants. Bioresource Technology, 2008, 99, 5157-5159.	4.8	15
99	Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 2008, 99, 5915-5922.	4.8	294
100	Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme and Microbial Technology, 2008, 42, 624-630.	1.6	129
101	Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technology, 2008, 99, 5165-5176.	4.8	287
102	Fiber Separated from Distillers Dried Grains with Solubles as a Feedstock for Ethanol Production. Cereal Chemistry, 2007, 84, 563-566.	1.1	10
103	Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme and Microbial Technology, 2007, 40, 794-800.	1.6	93
104	Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in <i>Lactobacillus brevis</i> . FEMS Microbiology Letters, 2007, 274, 291-297.	0.7	21
105	Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Applied Microbiology and Biotechnology, 2007, 74, 1264-1275.	1.7	32
106	Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants. Applied Biochemistry and Biotechnology, 2007, 137-140, 171-183.	1.4	18
107	Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol. , 2007, , 13-21.		3
108	Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. , 2007, 74, 1264.		1

#	Article	IF	CITATIONS
109	Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme and Microbial Technology, 2006, 39, 1137-1144.	1.6	98
110	Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006, 30, 880-891.	2.9	440
111	Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 1-7.	1.4	47
112	Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2006, 71, 339-349.	1.7	248
113	Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Applied Microbiology and Biotechnology, 2006, 72, 1285-1296.	1.7	68
114	Genetically Engineered Escherichia Coli for Ethanol Production from Xylose. Food and Bioproducts Processing, 2006, 84, 114-122.	1.8	41
115	Profile of Enzyme Production by <i>Trichoderma reesei</i> Grown on Corn Fiber Fractions. Applied Biochemistry and Biotechnology, 2005, 121, 0321-0334.	1.4	19
116	Bioabatement to Remove Inhibitors from Biomass-Derived Sugar Hydrolysates. Applied Biochemistry and Biotechnology, 2005, 121, 0379-0390.	1.4	59
117	Industrial Scale-Up of pH-Controlled Liquid Hot Water Pretreatment of Corn Fiber for Fuel Ethanol Production. Applied Biochemistry and Biotechnology, 2005, 125, 077-098.	1.4	158
118	In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Applied Microbiology and Biotechnology, 2005, 67, 52-58.	1.7	60
119	Functional Expression of Bacterial Zymobacter palmae Pyruvate Decarboxylase Gene in Lactococcus lactis. Current Microbiology, 2005, 50, 324-328.	1.0	27
120	Hydrolysis and Fermentation of Pericarp and Endosperm Fibers Recovered from Enzymatic Corn Dry-Grind Process. Cereal Chemistry, 2005, 82, 616-620.	1.1	13
121	Ethanol Fermentation of Starch from Field Peas. Cereal Chemistry, 2005, 82, 554-558.	1.1	21
122	Bioabatement to Remove Inhibitors from Biomass-Derived Sugar Hydrolysates. , 2005, , 379-390.		2
123	Profile of enzyme production by Trichoderma reesei grown on corn fiber fractions. Applied Biochemistry and Biotechnology, 2005, 121-124, 321-34.	1.4	5
124	Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Applied Biochemistry and Biotechnology, 2005, 121-124, 379-90.	1.4	18
125	A Comparison Between Conversion Of Pericarp And Endosperm Fiber From Corn Into Ethanol. , 2004, , .		1
126	Properties of a Recombinant β-Glucosidase from Polycentric Anaerobic Fungus Orpinomyces PC-2 and Its Application for Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2004, 113, 233-250.	1.4	17

#	Article	IF	CITATIONS
127	Fermentation of "Quick Fiber" Produced from a Modified Corn-Milling Process into Ethanol and Recovery of Corn Fiber. Applied Biochemistry and Biotechnology, 2004, 115, 0937-0950.	1.4	27
128	Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 345-352.	1.4	332
129	Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Applied Microbiology and Biotechnology, 2004, 64, 125-131.	1.7	177
130	Fermentation of "Quick Fiber―Produced from a Modified Corn-Milling Process into Ethanol and Recovery of Corn Fiber Oil. , 2004, , 937-949.		1
131	Fermentation of "Quick Fiber" produced from a modified corn-milling process into ethanol and recovery of corn fiber. Applied Biochemistry and Biotechnology, 2004, 113-116, 937-49.	1.4	2
132	Production of acetic acid by Dekkera/Brettanomyces yeasts under conditions of constant pH. World Journal of Microbiology and Biotechnology, 2003, 19, 101-105.	1.7	44
133	Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology, 2003, 63, 258-266.	1.7	683
134	Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 315-321.	1.4	43
135	Pretreatment of Wet-Milled Corn Fiber to Improve Recovery of Corn Fiber Oil and Phytosterols. Cereal Chemistry, 2003, 80, 118-122.	1.1	19
136	Removal of Fermentation Inhibitors Formed during Pretreatment of Biomass by Polymeric Adsorbents. Industrial & Engineering Chemistry Research, 2002, 41, 6132-6138.	1.8	181
137	Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Applied Microbiology and Biotechnology, 2001, 56, 120-125.	1.7	146
138	Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. Journal of Industrial Microbiology and Biotechnology, 2001, 27, 259-264.	1.4	89
139	Xylitol production from corn fibre hydrolysates by a two-stage fermentation process. Process Biochemistry, 2000, 35, 765-769.	1.8	19
140	Development of New Ethanologenic Escherichia coli Strains for Fermentation of Lignocellulosic Biomass. Applied Biochemistry and Biotechnology, 2000, 84-86, 181-196.	1.4	139
141	Development of New Ethanologenic Escherichia coli Strains for Fermentation of Lignocellulosic Biomass. , 2000, , 181-196.		3
142	Fermentations with New Recombinant Organisms. Biotechnology Progress, 1999, 15, 867-875.	1.3	134
143	Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. Journal of Industrial Microbiology and Biotechnology, 1999, 22, 575-581.	1.4	37
144	Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie Van Leeuwenhoek, 1998, 74, 237-243.	0.7	29

#	Article	IF	CITATIONS
145	Fuel ethanol production from corn fiber current status and technical prospects. Applied Biochemistry and Biotechnology, 1998, 70-72, 115-125.	1.4	50
146	Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme and Microbial Technology, 1998, 23, 366-371.	1.6	52
147	Fuel Ethanol Production from Corn Fiber Current Status and Technical Prospects. , 1998, , 115-125.		3
148	Screening forl-arabinose fermenting yeasts. Applied Biochemistry and Biotechnology, 1996, 57-58, 233-242.	1.4	66
149	Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnology Letters, 1996, 18, 985-990.	1.1	50
150	Chapter 27 Cell-Cycle Analysis of Saccharomyces cerevisiae. Methods in Cell Biology, 1994, 42 Pt B, 457-475.	0.5	23
151	Kinetics of the Cell Cycle of Saccharomyces cerevisiae. Annals of the New York Academy of Sciences, 1992, 665, 59-71.	1.8	32
152	Bromodeoxyuridine labeling and flow cytometric identification of replicating Saccharomyces cerevisiae cells: lengths of cell cycle phases and population variability at specific cell cycle positions. Biotechnology Progress, 1991, 7, 291-298.	1.3	29
153	Production of Ethanol from Corn and Sugarcane. , 0, , 1-15.		7