Fenge Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030516/publications.pdf

Version: 2024-02-01

758635 610482 31 626 12 24 citations h-index g-index papers 33 33 33 755 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Oxidative stress in oocyte aging and female reproduction. Journal of Cellular Physiology, 2021, 236, 7966-7983.	2.0	141
2	Microarray-Based Approach Identifies Differentially Expressed MicroRNAs in Porcine Sexually Immature and Mature Testes. PLoS ONE, 2010, 5, e11744.	1.1	73
3	The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. International Journal of Biological Sciences, 2020, 16, 38-48.	2.6	45
4	Characterization of swine testicular cell line as immature porcine Sertoli cell line. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 427-433.	0.7	42
5	miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene. Scientific Reports, 2016, 6, 32783.	1.6	40
6	miR-638 Inhibits immature Sertoli cell growth by indirectly inactivating PI3K/AKT pathway via SPAG1 gene. Cell Cycle, 2017, 16, 2290-2300.	1.3	36
7	Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics, 2011, 12, 111.	1.2	30
8	miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor. Scientific Reports, 2016, 6, 27914.	1.6	25
9	MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death and Disease, 2017, 8, e2597-e2597.	2.7	24
10	Associations of TCF12, CTNNAL1 and WNT10B gene polymorphisms with litter size in pigs. Animal Reproduction Science, 2013, 140, 189-194.	0.5	20
11	Discovery of Potential piRNAs from Next Generation Sequences of the Sexually Mature Porcine Testes. PLoS ONE, 2012, 7, e34770.	1.1	18
12	Exploiting RNA-sequencing data from the porcine testes to identify the key genes involved in spermatogenesis in Large White pigs. Gene, 2015, 573, 303-309.	1.0	14
13	MicroRNA transcriptome analysis of poly I:C-stimulated and PRRSV-infected porcine alveolar macrophages. Journal of Applied Genetics, 2019, 60, 375-383.	1.0	14
14	Integrated analysis of miRNA/mRNA network in placenta identifies key factors associated with labor onset of Large White and Qingping sows. Scientific Reports, 2015, 5, 13074.	1.6	12
15	Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biochemistry and Function, 2008, 26, 548-556.	1.4	10
16	miRâ€17â€5p affects porcine granulosa cell growth and oestradiol synthesis by targeting <i>E2F1</i> gene. Reproduction in Domestic Animals, 2019, 54, 1459-1469.	0.6	10
17	The transcription factor ccaat/enhancer binding protein \hat{I}^2 (C/EBP \hat{I}^2) and miR-27a regulate the expression of porcine Dickkopf2 (DKK2). Scientific Reports, 2015, 5, 17972.	1.6	9
18	Functional analysis of HSPA1A and HSPA8 in parturition. Biochemical and Biophysical Research Communications, 2017, 483, 371-379.	1.0	9

#	Article	IF	CITATIONS
19	Transcription factor C/EBP \hat{l}^2 and $17\hat{l}^2$ -estradiol promote transcription of the porcine p53 gene. International Journal of Biochemistry and Cell Biology, 2014, 47, 76-82.	1.2	8
20	Genetic effect and combined genotype effect of <i>ESR</i> , <i>FSH</i> , <i>CTNNAL1</i> and <i>miR-27a</i> loci on litter size in a Large White population. Animal Biotechnology, 2019, 30, 287-292.	0.7	8
21	Discovery of two potential DAZL gene markers for sperm quality in boars by population association studies. Animal Reproduction Science, 2013, 143, 97-101.	0.5	7
22	$\mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc SLA-}11\mbox{\sc /i}\mbox{\sc mutations}$ are associated with litter size traits in Large White and Chinese DIV pigs. Animal Biotechnology, 2019, 30, 212-218.	0.7	7
23	Identification of the promoter region and genetic mutations of the porcine GALP gene. Molecular Biology Reports, 2013, 40, 2821-2827.	1.0	4
24	Nâ€Acetylâ€≺scp>lâ€eysteine restores reproductive defects caused by <i>Ggt1</i> deletion in mice. Clinical and Translational Medicine, 2021, 11, e510.	1.7	4
25	miR-135a Suppresses Granulosa Cell Growth by Targeting Tgfbr1 and Ccnd2 during Folliculogenesis in Mice. Cells, 2021, 10, 2104.	1.8	4
26	<i>AR</i> regulates porcine immature Sertoli cell growth via binding to <i>RNF4</i> and miRâ€124a. Reproduction in Domestic Animals, 2021, 56, 416-426.	0.6	3
27	BCL2â€essociated athanogene 6 exon24 contributes to testosterone synthesis and male fertility in mammals. Cell Proliferation, 0, , .	2.4	3
28	H2AFZ, RNF4 and NR4A1 loci are associated with boar semen quality by population association studies. Animal Biotechnology, 2019, 30, 311-316.	0.7	2
29	PIM2â€mediated phosphorylation contributes to granulosa cell survival via resisting apoptosis during folliculogenesis. Clinical and Translational Medicine, 2021, 11, e359.	1.7	2
30	Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho ($\langle i \rangle KL \langle i \rangle$) gene. PeerJ, 2016, 4, e2186.	0.9	2
31	Nonsynonymous SNPs within <i>C7H15orf39</i> and <i>NOS2</i> are associated with boar semen quality. Animal Biotechnology, 0, , 1-5.	0.7	0