Charles E Murry

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9030403/charles-e-murry-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 24,936 71 157 h-index g-index citations papers 28,450 7.06 178 14.6 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
160	Amino acid primed mTOR activity is essential for heart regeneration <i>IScience</i> , 2022 , 25, 103574	6.1	1
159	Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. <i>Nature Communications</i> , 2021 , 12, 6324	17.4	1
158	Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. <i>Light: Science and Applications</i> , 2021 , 10, 237	16.7	6
157	SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. <i>Stem Cell Reports</i> , 2021 , 16, 478-492	8	29
156	Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Undergo Clonal Expansion In Vivo. <i>Circulation</i> , 2021 , 143, 1635-1638	16.7	4
155	High-resolution 3D fluorescent imaging of intact tissues. 2021 , 1, 1-14		
154	Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. <i>Cell Reports</i> , 2021 , 35, 109088	10.6	4
153	Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. <i>Biomaterials</i> , 2021 , 272, 120764	15.6	19
152	Quantitative Analyses of the Left Ventricle Volume and Cardiac Function in Normal and Infarcted Yucatan Minipigs. <i>Journal of Imaging</i> , 2021 , 7, 107	3.1	78
151	Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. <i>Stem Cell Reports</i> , 2021 , 16, 2473-2487	8	12
150	A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. <i>Stem Cell Reports</i> , 2020 , 15, 226-241	8	9
149	Stem cells and the heart-the road ahead. Science, 2020, 367, 854-855	33.3	20
148	Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. <i>Biomaterials</i> , 2020 , 240, 119856	15.6	21
147	Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts. <i>PLoS ONE</i> , 2020 , 15, e0227780	3.7	3
146	Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology, 2020, 17, 341-359	14.8	177
145	Cell Therapy Strategies With No Safety Concerns and Demonstrated Benefits Warrant Study - Reply. <i>Circulation Journal</i> , 2020 , 84, 2122	2.9	
144	NanoMEA: A Tool for High-Throughput, Electrophysiological Phenotyping of Patterned Excitable Cells. <i>Nano Letters</i> , 2020 , 20, 1561-1570	11.5	18

(2018-2020)

143	Delta-1 Functionalized Hydrogel Promotes hESC-Cardiomyocyte Graft Proliferation and Maintains Heart Function Post-Injury. <i>Molecular Therapy - Methods and Clinical Development</i> , 2020 , 17, 986-998	6.4	8	
142	Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. <i>Cardiovascular Research</i> , 2020 , 116, 368-382	9.9	29	
141	Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2019 , 13, 657-668	8	93	
140	The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. <i>Nature Communications</i> , 2019 , 10, 2267	17.4	40	
139	Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. <i>Nature Communications</i> , 2019 , 10, 1538	17.4	52	
138	Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. <i>Nature Communications</i> , 2019 , 10, 584	17.4	64	
137	Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 3876-3888	5.5	15	
136	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. <i>Journal of Cell Biology</i> , 2019 , 218, 2919-2944	7.3	24	
135	Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. <i>Nature Biotechnology</i> , 2019 , 37, 895-906	44.5	87	
134	Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. <i>Pediatric Cardiology</i> , 2019 , 40, 1367-1387	2.1	31	
133	TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. <i>Nature Communications</i> , 2019 , 10, 4671	17.4	37	
132	Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. <i>Circulation</i> , 2019 , 140, 1647-1660	16.7	29	
131	Lost in the fire. <i>Science</i> , 2019 , 364, 123-124	33.3	3	
130	Regenerating the field of cardiovascular cell therapy. <i>Nature Biotechnology</i> , 2019 , 37, 232-237	44.5	90	
129	Function Follows Form - A Review of Cardiac Cell Therapy. Circulation Journal, 2019, 83, 2399-2412	2.9	28	
128	Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. <i>Cell Cycle</i> , 2018 , 17, 535-549	4.7	7	
127	Human Pluripotent Stem Cell-Derived Engineered Tissues: Clinical Considerations. <i>Cell Stem Cell</i> , 2018 , 22, 294-297	18	32	
126	Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 1543-155	5∮.4	22	

125	Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. <i>Journal of Molecular and Cellular Cardiology</i> , 2018 , 118, 147-158	5.8	87
124	Genetic Lineage Tracing of Sca-1 Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. <i>Circulation</i> , 2018 , 138, 2931-2939	16.7	59
123	The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?. <i>Stem Cell Reports</i> , 2018 , 10, 1429-1431	8	17
122	ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. <i>IScience</i> , 2018 , 2, 88-10	06.1	11
121	Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells. <i>JACC Basic To Translational Science</i> , 2018 , 3, 728-740	8.7	32
120	Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1-Positive Cells in the Adult Mouse Heart. <i>Circulation</i> , 2018 , 138, 2960-2962	16.7	27
119	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. <i>Cell Stem Cell</i> , 2018 , 23, 586-598.e8	18	131
118	Hallmarks of cardiac regeneration. <i>Nature Reviews Cardiology</i> , 2018 , 15, 579-580	14.8	26
117	Human Organ-Specific Endothelial Cell Heterogeneity. <i>IScience</i> , 2018 , 4, 20-35	6.1	115
116	Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. <i>Nature Biotechnology</i> , 2018 , 36, 597-605	44.5	314
115	In Vivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts. <i>Stem Cell Reports</i> , 2017 , 8, 278-289	8	95
114	Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. <i>Nature Protocols</i> , 2017 , 12, 15-31	18.8	102
113	Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. <i>Chemical Communications</i> , 2017 , 53, 7412-7415	5.8	68
112	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. <i>Cell Reports</i> , 2017 , 20, 1597-1608	10.6	21
111	Cardiomyocyte Regeneration: A Consensus Statement. <i>Circulation</i> , 2017 , 136, 680-686	16.7	287
110	Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle. <i>Stem Cells and Development</i> , 2016 , 25, 1559-1569	4.4	15
109	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342	D\$ 7 3	108
108	AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. <i>Molecular Therapy</i> , 2016 , 24, 240-250	11.7	20

(2015-2016)

107	Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. <i>ACS Applied Materials & Camp; Interfaces</i> , 2016 , 8, 21923-32	9.5	118
106	Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue. <i>Tissue Engineering - Part A</i> , 2016 , 22, 633-44	3.9	37
105	Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/Etatenin signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1002-7	11.5	39
104	Policy: Global standards for stem-cell research. <i>Nature</i> , 2016 , 533, 311-3	50.4	33
103	Translation of Cardiac Myosin Activation with 2-deoxy-ATP to Treat Heart Failure via an Experimental Ribonucleotide Reductase-Based Gene Therapy. <i>JACC Basic To Translational Science</i> , 2016 , 1, 666-679	8.7	3
102	Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. <i>Stem Cell Reports</i> , 2016 , 6, 885-896	8	53
101	Imprecision Medicine: A One-Size-Fits-Many Approach for Muscle Dystrophy. <i>Cell Stem Cell</i> , 2016 , 18, 423-4	18	3
100	SCIENTIFIC COMMUNITY. Confronting stem cell hype. <i>Science</i> , 2016 , 352, 776-7	33.3	86
99	Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797	8	136
98	Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. <i>Circulation</i> , 2016 , 134, 155	57 ¹⁶ 76	7 ²⁵⁴
97	Depth-resolved 3D visualization of coronary microvasculature with optical microangiography. <i>Physics in Medicine and Biology</i> , 2016 , 61, 7536-7550	3.8	8
96	Response to cardiac regeneration validated. <i>Nature Biotechnology</i> , 2015 , 33, 587	44.5	2
95	The winding road to regenerating the human heart. Cardiovascular Pathology, 2015, 24, 133-40	3.8	80
94	Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. <i>Stem Cells</i> , 2015 , 33, 2148-57	5.8	85
93	Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E2785-94	11.5	160
92	Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. <i>Nature Biotechnology</i> , 2015 , 33, 646-55	44.5	107
91	Inhibition of Etatenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. <i>Development (Cambridge)</i> , 2015 , 142, 3198-209	6.6	47
90	Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes. <i>Cell Reports</i> , 2015 , 12, 1960-7	10.6	53

89	The advancement of human pluripotent stem cell-derived therapies into the clinic. <i>Development</i> (Cambridge), 2015, 142, 3077-84	6.6	14
88	Ribonucleotide reductase-mediated increase in dATP improves cardiac performance via myosin activation in a large animal model of heart failure. <i>European Journal of Heart Failure</i> , 2015 , 17, 772-81	12.3	21
87	Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. <i>PLoS ONE</i> , 2015 , 10, e0126259	3.7	75
86	Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts. <i>PLoS ONE</i> , 2015 , 10, e0131446	3.7	71
85	Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. <i>Genome Biology</i> , 2015 , 16, 126	18.3	363
84	Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. <i>Stem Cell Reports</i> , 2015 , 5, 753-762	8	80
83	Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. <i>Nature</i> , 2014 , 510, 273-7	50.4	939
82	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. <i>Nature Medicine</i> , 2014 , 20, 616-23	50.5	604
81	Heart regeneration with engineered myocardial tissue. <i>Annual Review of Biomedical Engineering</i> , 2014 , 16, 1-28	12	55
80	Proliferation at the heart of preadolescence. <i>Cell</i> , 2014 , 157, 765-7	56.2	4
8o 79	Proliferation at the heart of preadolescence. <i>Cell</i> , 2014 , 157, 765-7 Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. <i>Circulation Research</i> , 2014 , 114, 511-23	56.2 15.7	4 630
	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.		
79	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 2014, 114, 511-23	15.7	
79 78	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 2014, 114, 511-23 Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-18 Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug	15.7 44·5	175
79 78 77	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 2014, 114, 511-23 Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-18 Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. Stem Cell Research, 2014, 12, 467-80 Cell-based delivery of dATP via gap junctions enhances cardiac contractility. Journal of Molecular	15.7 44·5 1.6	175 87
79 78 77 76	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 2014, 114, 511-23 Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-18 Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. Stem Cell Research, 2014, 12, 467-80 Cell-based delivery of dATP via gap junctions enhances cardiac contractility. Journal of Molecular and Cellular Cardiology, 2014, 72, 350-9 Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced	15.7 44·5 1.6 5.8	175 87 15
79 78 77 76 75	Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. <i>Circulation Research</i> , 2014 , 114, 511-23 Clinical imaging in regenerative medicine. <i>Nature Biotechnology</i> , 2014 , 32, 804-18 Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. <i>Stem Cell Research</i> , 2014 , 12, 467-80 Cell-based delivery of dATP via gap junctions enhances cardiac contractility. <i>Journal of Molecular and Cellular Cardiology</i> , 2014 , 72, 350-9 Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. <i>Journal of Molecular and Cellular Cardiology</i> , 2014 , 72, 296-304 Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart: Iron Oxide Particles Versus Ferritin Overexpression Approach. <i>Journal of Cardiovascular Pharmacology and Therapeutics</i> ,	15.7 44.5 1.6 5.8 5.8	175 87 15 254

71	Capillary force lithography for cardiac tissue engineering. Journal of Visualized Experiments, 2014,	1.6	18
70	Letter by Murry et al regarding article, "Embryonic stem cell-derived cardiac myocytes are not ready for human trials". <i>Circulation Research</i> , 2014 , 115, e28-9	15.7	8
69	Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts. <i>Journal of Molecular and Cellular Cardiology</i> , 2014 , 72, 219-27	5.8	20
68	Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. <i>Stem Cell Reports</i> , 2014 , 2, 271-81	8	31
67	Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. <i>Journal of Biomechanical Engineering</i> , 2014 , 136, 051005	2.1	112
66	Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. <i>Cell</i> , 2013 , 154, 888-903	56.2	255
65	SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. <i>Journal of Molecular and Cellular Cardiology</i> , 2013 , 64, 124-31	5.8	42
64	Lack of thrombospondin-2 reduces fibrosis and increases vascularity around cardiac cell grafts. <i>Cardiovascular Pathology</i> , 2013 , 22, 91-5	3.8	25
63	Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. <i>Development (Cambridge)</i> , 2013 , 140, 3799-808	6.6	39
62	Improving survival and efficacy of pluripotent stem cell-derived cardiac grafts. <i>Journal of Cellular and Molecular Medicine</i> , 2013 , 17, 1355-62	5.6	65
61	Transgenic overexpression of ribonucleotide reductase improves cardiac performance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6187-92	11.5	29
60	A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. <i>Cell</i> , 2012 , 151, 221-32	56.2	254
59	Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. <i>Nature</i> , 2012 , 489, 322-5	50.4	563
58	Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. <i>PLoS ONE</i> , 2012 , 7, e33165	3.7	73
57	Truncations of titin causing dilated cardiomyopathy. New England Journal of Medicine, 2012, 366, 619-2	2859.2	874
56	Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. <i>PLoS ONE</i> , 2012 , 7, e46971	3.7	26
55	Reprogramming fibroblasts into cardiomyocytes. New England Journal of Medicine, 2011, 364, 177-8	59.2	17
54	Upregulation of cardiomyocyte ribonucleotide reductase increases intracellular 2 deoxy-ATP, contractility, and relaxation. <i>Journal of Molecular and Cellular Cardiology</i> , 2011 , 51, 894-901	5.8	36

53	Heart regeneration. <i>Nature</i> , 2011 , 473, 326-35	50.4	894
52	Engineered human cardiac tissue. <i>Pediatric Cardiology</i> , 2011 , 32, 334-41	2.1	21
51	Growth of engineered human myocardium with mechanical loading and vascular coculture. <i>Circulation Research</i> , 2011 , 109, 47-59	15.7	512
50	Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. <i>Biomaterials</i> , 2011 , 32, 2407-16	15.6	192
49	Ferritin Overexpression for Noninvasive Magnetic Resonance Imaging B ased Tracking of Stem Cells Transplanted into the Heart. <i>Molecular Imaging</i> , 2010 , 9, 7290.2010.00020	3.7	60
48	VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2010 , 30, 80-9	9.4	133
47	Proangiogenic scaffolds as functional templates for cardiac tissue engineering. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15211-6	11.5	498
46	Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. <i>PLoS ONE</i> , 2010 , 5, e11134	3.7	212
45	Scaffold-free human cardiac tissue patch created from embryonic stem cells. <i>Tissue Engineering - Part A</i> , 2009 , 15, 1211-22	3.9	132
44	Development biology. Turnover after the fallout. <i>Science</i> , 2009 , 324, 47-8	33.3	20
43	Systems approaches to preventing transplanted cell death in cardiac repair. <i>Journal of Molecular and Cellular Cardiology</i> , 2008 , 45, 567-81	5.8	320
42	A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. <i>Cell Stem Cell</i> , 2008 , 2, 448-60	18	205
41	Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. <i>Cardiovascular Pathology</i> , 2008 , 17, 6-13	3.8	39
40	Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. <i>Cell</i> , 2008 , 132, 661-80	56.2	1369
39	Get with the (re)program: cardiovascular potential of skin-derived induced pluripotent stem cells. <i>Circulation</i> , 2008 , 118, 472-5	16.7	14
38	Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. <i>Nature Biotechnology</i> , 2007 , 25, 1015-24	44.5	1794
37	Response to Comment on Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response [FASEB Journal, 2007, 21, 1291-1291]	0.9	3
36	Chemical dimerization of fibroblast growth factor receptor-1 induces myoblast proliferation, increases intracardiac graft size, and reduces ventricular dilation in infarcted hearts. <i>Human Gene Therapy</i> , 2007 , 18, 401-12	4.8	16

(2002-2007)

35	Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. <i>FASEB Journal</i> , 2007 , 21, 1345-57	0.9	502
34	Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9685-90	11.5	464
33	Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. <i>American Journal of Pathology</i> , 2007 , 171, 1431-40	5.8	132
32	Regeneration gaps: observations on stem cells and cardiac repair. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 1777-85	15.1	281
31	rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. <i>Nature Medicine</i> , 2006 , 12, 787-9	50.5	248
30	Cell-based cardiac repair: reflections at the 10-year point. <i>Circulation</i> , 2005 , 112, 3174-83	16.7	309
29	Formation of human myocardium in the rat heart from human embryonic stem cells. <i>American Journal of Pathology</i> , 2005 , 167, 663-71	5.8	369
28	Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. <i>Journal of Molecular and Cellular Cardiology</i> , 2005 , 39, 865-73	5.8	153
27	Regenerating the heart. <i>Nature Biotechnology</i> , 2005 , 23, 845-56	44.5	807
26	Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. <i>Circulation</i> , 2005 , 112, 2951-8	16.7	130
25	Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 2004, 94, e56-60	15.7	107
24	NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. <i>Circulation Research</i> , 2004 , 94, 1340-50	15.7	78
23	Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. <i>Nature</i> , 2004 , 428, 664-8	50.4	1838
22	Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. <i>American Journal of Pathology</i> , 2003 , 163, 2433-40	5.8	224
21	In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 60, 472-9		150
20	Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. <i>Circulation Research</i> , 2002 , 90, 634-40	15.7	374
19	Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. <i>Journal of Molecular and Cellular Cardiology</i> , 2002 , 34, 251-3	5.8	83
18	Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of Molecular and Cellular Cardiology, 2002, 34, 241-9	5.8	311

17	Muscle cell grafting for the treatment and prevention of heart failure. <i>Journal of Cardiac Failure</i> , 2002 , 8, S532-41	3.3	37
16	Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. <i>Journal of Molecular and Cellular Cardiology</i> , 2001 , 33, 907-21	5.8	749
15	Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. <i>Journal of Cell Biology</i> , 2000 , 149, 731-40	7.3	286
14	Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing?. <i>Cardiovascular Pathology</i> , 2000 , 9, 337-44	3.8	72
13	Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. <i>Circulation</i> , 1999 , 100, 193-202	16.7	442
12	Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. <i>Journal of Biological Chemistry</i> , 1999 , 274, 26803-9	5.4	96
11	Platelet-derived growth factor-A mRNA expression in fetal, normal adult, and atherosclerotic human aortas. Analysis by competitive polymerase chain reaction. <i>Circulation</i> , 1996 , 93, 1095-106	16.7	12
10	Osteopontin expression in cardiovascular diseases. <i>Annals of the New York Academy of Sciences</i> , 1995 , 760, 109-26	6.5	166
9	Healing of myocardial infarcts in dogs. Effects of late reperfusion. <i>Circulation</i> , 1995 , 92, 1891-901	16.7	64
8	Electrophysiological effects of monophasic and biphasic stimuli in normal and infarcted dogs. <i>PACE - Pacing and Clinical Electrophysiology</i> , 1990 , 13, 1158-72	1.6	48
7	Evaluation of Free Radical Injury in Myocardium. <i>Toxicologic Pathology</i> , 1990 , 18, 470-480	2.1	17
6	Pitfalls Associated with cDNA Microarrays 🖟 Cautionary Tale113-125		
5	SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function		4
4	Dynamic reorganization of nuclear architecture during human cardiogenesis		6
3	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy		2
2	Functional Maturation of Human iPSC-based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices		2
1	Pharmacologic Therapy for Engraftment Arrhythmia Induced by Transplantation of Human Cardiomyoo	ytes	1