Yong-Guan Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9030005/yong-guan-zhu-publications-by-year.pdf

Version: 2024-04-20

ext. papers

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

631 45,023 111 185 papers citations h-index g-index 7.91

ext. citations

avg, IF

L-index

#	Paper	IF	Citations
631	Identification of the rhizosphere microbes that actively consume plant-derived carbon. <i>Soil Biology and Biochemistry</i> , 2022 , 166, 108577	7.5	O
630	Nanopore sequencing analysis of integron gene cassettes in sewages and soils <i>Science of the Total Environment</i> , 2022 , 817, 152766	10.2	0
629	The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization <i>Environment International</i> , 2022 , 161, 107133	12.9	3
628	Antibiotic resistance genes and antibiotic sensitivity in bacterial aerosols and their comparisons with known respiratory pathogens. <i>Journal of Aerosol Science</i> , 2022 , 161, 105931	4.3	3
627	Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127525	12.8	2
626	Long-term combined application of chemical fertilizers and organic manure shapes the gut microbial diversity and functional community structures of earthworms. <i>Applied Soil Ecology</i> , 2022 , 170, 104250	5	0
625	Profiling the antibiotic resistome in soils between pristine and human-affected sites on the Tibetan Plateau <i>Journal of Environmental Sciences</i> , 2022 , 111, 442-451	6.4	O
624	The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil. Journal of Hazardous Materials, 2022 , 421, 126731	12.8	2
623	Metabolic responses of indigenous bacteria in chicken faeces and maggots to multiple antibiotics via heavy water labeled single-cell Raman spectroscopy <i>Journal of Environmental Sciences</i> , 2022 , 113, 394-402	6.4	1
622	Variations of earthworm gut bacterial community composition and metabolic functions in coastal upland soil along a 700-year reclamation chronosequence. <i>Science of the Total Environment</i> , 2022 , 804, 149994	10.2	1
621	Viral diversity and potential environmental risk in microplastic at watershed scale: Evidence from metagenomic analysis of plastisphere <i>Environment International</i> , 2022 , 161, 107146	12.9	0
620	Patterns and drivers of the degradability of dissolved organic matter in dryland soils on the Tibetan Plateau. <i>Journal of Applied Ecology</i> , 2022 , 59, 884-894	5.8	1
619	Influences of arsenate and/or phosphate adsorption to ferrihydrite on iron-reducing and arsenic-reducing microbial communities in paddy soil revealed by rRNA-13C-acetate probing. <i>Soil Biology and Biochemistry</i> , 2022 , 108679	7.5	O
618	How Different Nitrogen Fertilizers Affect Arsenic Mobility in Paddy Soil After Straw Incorporation?. Journal of Hazardous Materials, 2022 , 129135	12.8	1
617	Unveiling the role of dissolved organic matter on phosphorus sorption and availability in a 5-year manure amended paddy soil <i>Science of the Total Environment</i> , 2022 , 155892	10.2	1
616	Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species <i>Journal of Hazardous Materials</i> , 2022 , 435, 128985	12.8	0
615	Impacts of global change on phyllosphere microbiome New Phytologist, 2021,	9.8	5

(2021-2021)

614	Build in prevention and preparedness to improve climate resilience in coastal cities: Lessons from China GBA. <i>One Earth</i> , 2021 , 4, 1356-1360	8.1	1	
613	Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. <i>Water Research</i> , 2021 , 209, 117907	12.5	1	
612	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. <i>Environmental Microbiology</i> , 2021 ,	5.2	2	
611	Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. <i>Journal of Hazardous Materials</i> , 2021 , 127774	12.8	5	
610	Powering biological nitrogen removal from the environment by geobatteries. <i>Trends in Biotechnology</i> , 2021 ,	15.1	2	
609	Spatial and temporal dynamics of microbiomes and resistomes in broiler litter stockpiles <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 6201-6211	6.8	О	
608	Microbial communities on biodegradable plastics under different fertilization practices in farmland soil microcosms. <i>Science of the Total Environment</i> , 2021 , 809, 152184	10.2	2	
60 7	How to build Urbanome, the genome of the city?. Science of the Total Environment, 2021, 810, 152310	10.2		
606	Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review <i>Journal of Hazardous Materials</i> , 2021 , 427, 128131	12.8	7	
605	Influence of Legacy Mercury on Antibiotic Resistomes: Evidence from Agricultural Soils with Different Cropping Systems. <i>Environmental Science & Environmental Science & Envir</i>	10.3	1	
604	Fluoroquinolone antibiotics disturb the defense system, gut microbiome, and antibiotic resistance genes of Enchytraeus crypticus. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127509	12.8	2	
603	Does biological rhythm transmit from plants to rhizosphere microbes?. <i>Environmental Microbiology</i> , 2021 , 23, 6895-6906	5.2	1	
602	Similar heterotrophic communities but distinct interactions supported by red and green-snow algae in the Antarctic Peninsula. <i>New Phytologist</i> , 2021 , 233, 1358	9.8	2	
601	Technologies and perspectives for achieving carbon neutrality. <i>Innovation(China)</i> , 2021 , 2, 100180	17.8	37	
600	Global meta-analysis of microplastic contamination in reservoirs with a novel framework. <i>Water Research</i> , 2021 , 207, 117828	12.5	5	
599	Distribution, transfer, ecological and human health risks of antibiotics in bay ecosystems. <i>Environment International</i> , 2021 , 158, 106949	12.9	2	
598	Will a Non-antibiotic Metalloid Enhance the Spread of Antibiotic Resistance Genes: The Selenate Story. <i>Environmental Science & Environmental Science </i>	10.3	11	
597	Bacterial communities are more sensitive to ocean acidification than fungal communities in estuarine sediments. <i>FEMS Microbiology Ecology</i> , 2021 , 97,	4.3	1	

596	Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. <i>Environmental Microbiology</i> , 2021 , 23, 2659-2668	5.2	1
595	Potential of indigenous crop microbiomes for sustainable agriculture. <i>Nature Food</i> , 2021 , 2, 233-240	14.4	15
594	Biotic and abiotic factors distinctly drive contrasting biogeographic patterns between phyllosphere and soil resistomes in natural ecosystems. <i>ISME Communications</i> , 2021 , 1,		4
593	Soil-Food-Environment-Health Nexus for Sustainable Development. <i>Research</i> , 2021 , 2021, 9804807	7.8	3
592	Antibiotic resistance in the soil ecosystem: A One Health perspective. <i>Current Opinion in Environmental Science and Health</i> , 2021 , 20, 100230	8.1	12
591	Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. <i>Environmental Science & Ecosystems</i> , 2021 , 55, 7445-7455	10.3	11
590	Developing Surrogate Markers for Predicting Antibiotic Resistance "Hot Spots" in Rivers Where Limited Data Are Available. <i>Environmental Science & Environmental Science & Env</i>	10.3	6
589	Seasonal change is a major driver of soil resistomes at a watershed scale. <i>ISME Communications</i> , 2021 , 1,		2
588	Termite mound formation reduces the abundance and diversity of soil resistomes. <i>Environmental Microbiology</i> , 2021 ,	5.2	1
587	Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. <i>Environmental Science & Environmental Science & </i>	10.3	10
586	Super pathogens from environmental biotechnologies threaten global health. <i>National Science Review</i> , 2021 , 8, nwab110	10.8	2
585	Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. <i>ISME Journal</i> , 2021 , 15, 3508-3521	11.9	O
584	Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. <i>Environment International</i> , 2021 , 151, 106444	12.9	6
583	Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. <i>Science of the Total Environment</i> , 2021 , 771, 144848	10.2	5
582	Vertical distribution of antibiotic resistance genes in an urban green facade. <i>Environment International</i> , 2021 , 152, 106502	12.9	8
581	Mycorrhiza and Iron Tailings Synergistically Enhance Maize Resistance to Arsenic on Medium Arsenic-Polluted Soils Through Increasing Phosphorus and Iron Uptake. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 107, 1155-1160	2.7	O
580	Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogen-cycling microbial communities. <i>Molecular Ecology</i> , 2021 , 30, 4133-4146	5.7	4
579	Spatial patterns of urban green space and its actual utilization status in China based on big data analysis. <i>Big Earth Data</i> , 2021 , 5, 391-409	4.1	3

(2021-2021)

578	The co-evolution of life and organics on earth: Expansions of energy harnessing. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 603-625	11.1	2
577	Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 2159-2196	11.1	30
576	Earthworm gut: An overlooked niche for anaerobic ammonium oxidation in agricultural soil. <i>Science of the Total Environment</i> , 2021 , 752, 141874	10.2	3
575	Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. <i>Science of the Total Environment</i> , 2021 , 755, 142702	10.2	28
574	Air pollution could drive global dissemination of antibiotic resistance genes. <i>ISME Journal</i> , 2021 , 15, 270	0-289	28
573	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. <i>Environmental Microbiology</i> , 2021 , 23, 1907-1924	5.2	29
572	Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. <i>ISME Journal</i> , 2021 , 15, 550-561	11.9	47
571	Lessons learned from COVID-19 on potentially pathogenic soil microorganisms. <i>Soil Ecology Letters</i> , 2021 , 3, 1-5	2.7	9
570	Deterministic selection dominates microbial community assembly in termite mounds. <i>Soil Biology and Biochemistry</i> , 2021 , 152, 108073	7.5	10
569	Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization. <i>Environmental Science & Environmental Science & Environme</i>	10.3	7
568	Metagenomic and C tracing evidence for autotrophic microbial CO fixation in paddy soils. <i>Environmental Microbiology</i> , 2021 , 23, 924-933	5.2	1
567	Host selection shapes crop microbiome assembly and network complexity. <i>New Phytologist</i> , 2021 , 229, 1091-1104	9.8	80
566	Evaluation of Microbe-Driven Soil Organic Matter Quantity and Quality by Thermodynamic Theory. <i>MBio</i> , 2021 , 12,	7.8	2
565	Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. <i>Molecular Biology and Evolution</i> , 2021 , 38, 2337-2350	8.3	18
564	Long-Term Fertilization Shapes the Putative Electrotrophic Microbial Community in Paddy Soils Revealed by Microbial Electrosynthesis Systems. <i>Environmental Science & Environmental Science & Environ</i>	3 0 -344	18
563	Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125390	12.8	4
562	High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. <i>Environmental Science & Environmental Science</i>	10.3	3
561	Paper-Based Devices As a New Tool for Rapid and on-Site Monitoring of "Superbugs". Environmental Science & amp; Technology, 2021, 55, 12133-12135	10.3	1

560	Environmental antimicrobial resistance is associated with faecal pollution in Central Thailand's coastal aquaculture region. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125718	12.8	7
559	Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. <i>Microbiome</i> , 2021 , 9, 178	16.6	3
558	Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens. <i>ISME Journal</i> , 2021 ,	11.9	12
557	Precipitation increases the abundance of fungal plant pathogens in Eucalyptus phyllosphere. <i>Environmental Microbiology</i> , 2021 ,	5.2	5
556	Stimulation of N O emission via bacterial denitrification driven by acidification in estuarine sediments. <i>Global Change Biology</i> , 2021 , 27, 5564-5579	11.4	6
555	High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0138321	4.8	O
554	Continental-Scale Paddy Soil Bacterial Community Structure, Function, and Biotic Interaction. <i>MSystems</i> , 2021 , 6, e0136820	7.6	0
553	Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. <i>Microbiome</i> , 2021 , 9, 196	16.6	7
552	MoS Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. <i>ACS Nano</i> , 2021 , 15, 16344-16356	16.7	3
551	Trophic level drives the host microbiome of soil invertebrates at a continental scale. <i>Microbiome</i> , 2021 , 9, 189	16.6	2
550	Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 143, 116415	14.6	5
549	Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. <i>Environment International</i> , 2021 , 155, 106703	12.9	5
548	Characterization of tetracycline-resistant microbiome in soil-plant systems by combination of HO-based DNA-Stable isotope probing and metagenomics. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126440	12.8	0
547	Viral Community and Virus-Associated Antibiotic Resistance Genes in Soils Amended with Organic Fertilizers. <i>Environmental Science & Environmental Sci</i>	10.3	2
546	Warming-driven migration of core microbiota indicates soil property changes at continental scale. <i>Science Bulletin</i> , 2021 , 66, 2025-2035	10.6	1
545	How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment?. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 224, 112643	7	1
544	Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. <i>Journal of Environmental Sciences</i> , 2021 , 109, 171-180	6.4	4
543	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. <i>Communications Biology</i> , 2020 , 3, 737	6.7	14

(2020-2020)

542	Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. <i>Environment International</i> , 2020 , 140, 105766	12.9	47	
541	High starter phosphorus fertilization facilitates soil phosphorus turnover by promoting microbial functional interaction in an arable soil. <i>Journal of Environmental Sciences</i> , 2020 , 94, 179-185	6.4	8	
540	Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. <i>MSystems</i> , 2020 , 5,	7.6	23	
539	Dysbiosis in the Gut Microbiota of Soil Fauna Explains the Toxicity of Tire Tread Particles. <i>Environmental Science & Dysbiosamo; Technology</i> , 2020 , 54, 7450-7460	10.3	28	
538	Response to the commentary by M.W.C. Dharma-wardana on 'Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic'. <i>Science of the Total Environment</i> , 2020 , 721, 137591	10.2		
537	Dam Construction as an Important Anthropogenic Activity Disturbing Soil Organic Carbon in Affected Watersheds. <i>Environmental Science & Environmental </i>	10.3	2	
536	Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. <i>Environmental Pollution</i> , 2020 , 265, 114954	9.3	13	
535	Abundance, diversity, and structure of Geobacteraceae community in paddy soil under long-term fertilization practices. <i>Applied Soil Ecology</i> , 2020 , 153, 103577	5	10	
534	Changes in the environmental microbiome in the Anthropocene. Global Change Biology, 2020, 26, 3175-	3:1:7.7	15	
533	The driving factors of nematode gut microbiota under long-term fertilization. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	9	
532	Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. <i>Environment International</i> , 2020 , 142, 105869	12.9	58	
531	Economic Valuation of Earth Critical Zone: A Pilot Study of the Zhangxi Catchment, China. <i>Sustainability</i> , 2020 , 12, 1699	3.6	3	
530	Rice Grain Cadmium Concentrations in the Global Supply-Chain. Exposure and Health, 2020, 12, 869-876	8.8	26	
529	The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. <i>Lancet Infectious Diseases, The</i> , 2020 , 20, e51-e60	25.5	77	
528	Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. <i>Water Research</i> , 2020 , 174, 115603	12.5	23	
527	Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. <i>Environmental Pollution</i> , 2020 , 260, 113991	9.3	6	
526	The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. <i>Journal of Hazardous Materials</i> , 2020 , 391, 122200	12.8	16	
525	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-10421	11.5	37	

524	Effects of Earthworms on the Microbiomes and Antibiotic Resistomes of Detritus Fauna and Phyllospheres. <i>Environmental Science & Environmental Science</i>	10.3	25
523	Microbiome and antibiotic resistome in household dust from Beijing, China. <i>Environment International</i> , 2020 , 139, 105702	12.9	7
522	Antimicrobial Resistance is a Health Risk in Chinese Cities Now it Has Been Mapped. <i>Urban Health and Wellbeing</i> , 2020 , 45-48	0.3	1
521	Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. <i>Science of the Total Environment</i> , 2020 , 703, 134977	10.2	33
520	Large-scale patterns of soil antibiotic resistome in Chinese croplands. <i>Science of the Total Environment</i> , 2020 , 712, 136418	10.2	25
519	Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic. <i>Science of the Total Environment</i> , 2020 , 705, 135766	10.2	9
518	Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. <i>Soil Biology and Biochemistry</i> , 2020 , 141, 107679	7.5	22
517	Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. <i>Soil Biology and Biochemistry</i> , 2020 , 141, 107686	7.5	102
516	Host identity determines plant associated resistomes. <i>Environmental Pollution</i> , 2020 , 258, 113709	9.3	9
515	Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. <i>One Earth</i> , 2020 , 3, 176-186	8.1	21
515 514	Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. <i>One Earth</i> , 2020 , 3, 176-186 Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281	10.2	
	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox		2
514	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281 Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions	10.2	2
514 513	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281 Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. <i>Science of the Total Environment</i> , 2020 , 744, 140881 Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. <i>Nature</i>	10.2	2 29
514513512	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281 Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. <i>Science of the Total Environment</i> , 2020 , 744, 140881 Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. <i>Nature Geoscience</i> , 2020 , 13, 799-805 Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour	10.2	2 29 21
514513512511	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281 Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. <i>Science of the Total Environment</i> , 2020 , 744, 140881 Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. <i>Nature Geoscience</i> , 2020 , 13, 799-805 Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour the Spread of Coeliac Pathology?. <i>Foods</i> , 2020 , 9, Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation	10.2 10.2 18.3	2 29 21 4
514513512511510	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. <i>Earth-Science Reviews</i> , 2020 , 208, 103281 Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. <i>Science of the Total Environment</i> , 2020 , 744, 140881 Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. <i>Nature Geoscience</i> , 2020 , 13, 799-805 Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour the Spread of Coeliac Pathology?. <i>Foods</i> , 2020 , 9, Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strategies. <i>Environmental Science & Environmental Science & Environmental Science & Critical Reviews in Environmental Science and insights. <i>Critical Reviews in Environmental Science and</i></i>	10.2 10.2 18.3 4.9	2 29 21 4

(2019-2020)

506	Temporal Dynamics of Antibiotic Resistome in the Plastisphere during Microbial Colonization. <i>Environmental Science & Environmental Science & Environm</i>	10.3	52
505	Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. <i>Environmental Science & Environmental Sc</i>	10.3	9
504	Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121160	12.8	12
503	Identification of potential electrotrophic microbial community in paddy soils by enrichment of microbial electrolysis cell biocathodes. <i>Journal of Environmental Sciences</i> , 2020 , 87, 411-420	6.4	4
502	Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils. <i>Chemosphere</i> , 2020 , 239, 124622	8.4	10
501	Prevalence of Antibiotic Resistome in Ready-to-Eat Salad. <i>Frontiers in Public Health</i> , 2020 , 8, 92	6	9
500	The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition. <i>Microbiome</i> , 2019 , 7, 128	16.6	26
499	Towards Urbanome the genome of the city to enhance the form and function of future cities. <i>Nature Communications</i> , 2019 , 10, 4014	17.4	5
498	Transcriptome Reveals the Rice Response to Elevated Free Air CO Concentration and TiO Nanoparticles. <i>Environmental Science & Environmental Science & </i>	10.3	24
497	Changes in archaeal ether lipid composition in response to agriculture alternation in ancient and modern paddy soils. <i>Organic Geochemistry</i> , 2019 , 138, 103912	3.1	
496	Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. <i>Environment International</i> , 2019 , 125, 497-504	12.9	78
495	Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. <i>Journal of Hazardous Materials</i> , 2019 , 368, 386-396	12.8	51
494	Soil Functions: Connecting Earth's Critical Zone. <i>Annual Review of Earth and Planetary Sciences</i> , 2019 , 47, 333-359	15.3	31
493	Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 8575-8584	5.1	24
492	Trophic Transfer of Antibiotic Resistance Genes in a Soil Detritus Food Chain. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental	10.3	36
491	NHHPO-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum L.). <i>Environmental Pollution</i> , 2019 , 251, 651-658	9.3	9
490	Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. <i>Environmental Pollution</i> , 2019 , 252, 227-235	9.3	34
489	Manure and Doxycycline Affect the Bacterial Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. <i>Frontiers in Microbiology</i> , 2019 , 10, 725	5.7	20

488	Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. <i>MicrobiologyOpen</i> , 2019 , 8, e00851	3.4	13
4 ⁸ 7	Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. <i>Science of the Total Environment</i> , 2019 , 680, 70-78	10.2	20
486	Does nano silver promote the selection of antibiotic resistance genes in soil and plant?. <i>Environment International</i> , 2019 , 128, 399-406	12.9	32
485	Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. <i>Environmental Pollution</i> , 2019 , 251, 110-116	9.3	84
484	Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment, 2019, 676, 197-2	2 05 .2	15
483	Microbiota in non-flooded and flooded rice culms. FEMS Microbiology Ecology, 2019, 95,	4.3	6
482	Mobile Incubator for Iron(III) Reduction in the Gut of the Soil-Feeding Earthworm Pheretima guillelmi and Interaction with Denitrification. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 4215-4	12233	22
481	Fate of Antibiotic Resistant and Broad Host Range Plasmid in Natural Soil Microcosms. <i>Frontiers in Microbiology</i> , 2019 , 10, 194	5.7	28
480	Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. <i>Nature</i> , 2019 , 568, 108-111	50.4	74
479	Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 2019, 95,	4.3	43
479 47 ⁸	Microbiomes inhabiting rice roots and rhizosphere. <i>FEMS Microbiology Ecology</i> , 2019 , 95, Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541	4.3	105
478	Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541 Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire	13.1	105
47 ⁸ 477	Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541 Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire sieboldi. <i>Environmental Science & Description</i> , 2019 , 53, 3841-3849 RNA Stable Isotope Probing of Potential Feammox Population in Paddy Soil. <i>Environmental Science</i>	13.1	1053533
478 477 476	Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541 Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire sieboldi. <i>Environmental Science & Description of Potential Feammox Population in Paddy Soil.</i> RNA Stable Isotope Probing of Potential Feammox Population in Paddy Soil. <i>Environmental Science & Description of Potential Feammox Population in Paddy Soil.</i> Soil oxytetracycline exposure alters the microbial community and enhances the abundance of antibiotic resistance genes in the gut of Enchytraeus crypticus. <i>Science of the Total Environment</i> ,	13.1 10.3	1053533
478 477 476 475	Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541 Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire sieboldi. <i>Environmental Science & Science</i>	13.1 10.3 10.3	105353316
478 477 476 475 474	Antibiotic Resistomes in Plant Microbiomes. <i>Trends in Plant Science</i> , 2019 , 24, 530-541 Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire sieboldi. <i>Environmental Science & Science</i>	13.1 10.3 10.3 10.2	10535331627

470	High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers. <i>Journal of Soils and Sediments</i> , 2019 , 19, 641-651	3.4	8	
469	Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. <i>Science of the Total Environment</i> , 2019 , 647, 1113-1120	10.2	41	
468	Stable Isotope-Labeled Single-Cell Raman Spectroscopy Revealing Function and Activity of Environmental Microbes. <i>Methods in Molecular Biology</i> , 2019 , 2046, 95-107	1.4	2	
467	Arsenic and Sulfamethoxazole Increase the Incidence of Antibiotic Resistance Genes in the Gut of Earthworm. <i>Environmental Science & Earthworm (Company)</i> , 2019 , 53, 10445-10453	10.3	23	
466	Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem. <i>Soil Ecology Letters</i> , 2019 , 1, 14-21	2.7	3	
465	Loss of soil microbial diversity exacerbates spread of antibiotic resistance. <i>Soil Ecology Letters</i> , 2019 , 1, 3-13	2.7	33	
464	The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. <i>Environment International</i> , 2019 , 131, 104965	12.9	41	
463	Metabolic Inactivity and Re-awakening of a Nitrate Reduction Dependent Iron(II)-Oxidizing Bacterium. <i>Frontiers in Microbiology</i> , 2019 , 10, 1494	5.7	2	
462	Soil biota, antimicrobial resistance and planetary health. <i>Environment International</i> , 2019 , 131, 105059	12.9	86	
461	Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. <i>Water Research</i> , 2019 , 162, 347-357	12.5	56	
460	Fate of Labile Organic Carbon in Paddy Soil Is Regulated by Microbial Ferric Iron Reduction. <i>Environmental Science & Environmental Science & Environm</i>	10.3	20	
459	Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 260, 192-203	5.5	26	
458	Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (~2 fh) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. <i>Environmental Science & Environmental Science & Enviro</i>	2 3 -9 2 8	34 ⁸	
457	Suppressed N fixation and diazotrophs after four decades of fertilization. <i>Microbiome</i> , 2019 , 7, 143	16.6	86	
456	Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont. <i>Environmental Science & Environmental Science & En</i>	10.3	7	
455	Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. <i>Analytical Chemistry</i> , 2019 , 91, 15345-15354	7.8	28	
454	The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of in Soil Are Strongly Affected by Soil Origin. <i>Frontiers in Microbiology</i> , 2019 , 10, 2951	5.7	8	
453	Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. <i>Science of the Total Environment</i> , 2019 , 665, 61-68	10.2	37	

452	Distinct rhizosphere effect on active and total bacterial communities in paddy soils. <i>Science of the Total Environment</i> , 2019 , 649, 422-430	10.2	35
451	Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. <i>Science of the Total Environment</i> , 2019 , 649, 902-908	10.2	50
450	Effects of long-term fertilization on the associated microbiota of soil collembolan. <i>Soil Biology and Biochemistry</i> , 2019 , 130, 141-149	7.5	19
449	Exposure to tetracycline perturbs the microbiome of soil oligochaete Enchytraeus crypticus. <i>Science of the Total Environment</i> , 2019 , 654, 643-650	10.2	17
448	The gut microbiota of soil organisms show species-specific responses to liming. <i>Science of the Total Environment</i> , 2019 , 659, 715-723	10.2	12
447	Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. <i>Scientific Reports</i> , 2019 , 9, 25	4.9	18
446	Source Identification of Trace Elements in Peri-urban Soils in Eastern China. <i>Exposure and Health</i> , 2019 , 11, 195-207	8.8	8
445	Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective. <i>Environmental Pollution</i> , 2019 , 244, 127-134	9.3	17
444	AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	14
443	Identification of Steps in the Pathway of Arsenosugar Biosynthesis. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 634-641	10.3	17
442	Heavy water-labeled Raman spectroscopy reveals carboxymethylcellulose-degrading bacteria and degradation activity at the single-cell level. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 1455-146	5 4 :7	18
441	Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	64
440	Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. <i>Science of the Total Environment</i> , 2019 , 656, 512-520	10.2	92
439	Nitrogen inputs are more important than denitrifier abundances in controlling denitrification-derived NO emission from both urban and agricultural soils. <i>Science of the Total Environment</i> , 2019 , 650, 2807-2817	10.2	9
438	Soil amendment with sewage sludge affects soil prokaryotic community composition, mobilome and resistome. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	6
437	Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	38
436	Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. <i>Environmental Pollution</i> , 2018 , 239, 408-415	9.3	161
435	Co-optimization of sponge-core bioreactors for removing total nitrogen and antibiotic resistance genes from domestic wastewater. <i>Science of the Total Environment</i> , 2018 , 634, 1417-1423	10.2	13

434	Developing China® National Emission Trading Scheme: Experiences from Existing Global Schemes and China® Pilot Programs. <i>Chinese Geographical Science</i> , 2018 , 28, 287-295	2.9	2	
433	Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. <i>Journal of Cleaner Production</i> , 2018 , 189, 386-395	10.3	49	
432	DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. <i>FEMS Microbiology Ecology</i> , 2018 , 94,	4.3	17	
431	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. <i>Environmental Science & Environmental Science & En</i>	10.3	93	
430	The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. <i>Chemical Geology</i> , 2018 , 483, 56-64	4.2	22	
429	Arsenic in Soil-Plant System: A Synthesis 2018 , 453-464		1	
428	In Situ Stabilization of Toxic Metals in Polluted Soils Using Different Soil Amendments: Mechanisms and Environmental Implication 2018 , 563-572		1	
427	Human dissemination of genes and microorganisms in Earth's Critical Zone. <i>Global Change Biology</i> , 2018 , 24, 1488-1499	11.4	44	
426	Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. <i>Soil Biology and Biochemistry</i> , 2018 , 118, 103-114	7.5	80	
425	Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. <i>Environmental Pollution</i> , 2018 , 235, 150-154	9.3	88	
424	Impact of sludge treatments on the extractability and fate of acetyl sulfamethoxazole residues in amended soils. <i>Chemosphere</i> , 2018 , 194, 828-836	8.4	6	
423	Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. <i>Environmental Pollution</i> , 2018 , 235, 525-533	9.3	46	
422	Molecular Chemodiversity of Dissolved Organic Matter in Paddy Soils. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 963-971	10.3	82	
421	Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. <i>AMB Express</i> , 2018 , 8, 47	4.1	25	
420	Advances in research on the use of biochar in soil for remediation: a review. <i>Journal of Soils and Sediments</i> , 2018 , 18, 2433-2450	3.4	65	
419	Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. <i>Environmental Pollution</i> , 2018 , 236, 598-608	9.3	66	
418	Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. <i>Science of the Total Environment</i> , 2018 , 631-632, 1342-1349	10.2	57	
417	Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with N Labeling. <i>Analytical Chemistry</i> , 2018 , 90, 5082-5089	7.8	43	

416	Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. <i>Microbiome</i> , 2018 , 6, 27	16.6	152
415	Microbial pathways for nitrogen loss in an upland soil. <i>Environmental Microbiology</i> , 2018 , 20, 1723-1738	5.2	50
414	Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions. <i>Journal of Soils and Sediments</i> , 2018 , 18, 159-168	3.4	20
413	The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes. <i>Journal of Soils and Sediments</i> , 2018 , 18, 517-525	3.4	12
412	Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. <i>Science of the Total Environment</i> , 2018 , 621, 1224-1232	10.2	62
411	Review of antibiotic resistance in China and its environment. Environment International, 2018, 110, 160-	1 72 9	635
410	The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. <i>Science of the Total Environment</i> , 2018 , 613-614, 398-408	10.2	23
409	Global Survey of Antibiotic Resistance Genes in Air. <i>Environmental Science & Environmental Science & </i>	10.3	138
408	Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. <i>Environment International</i> , 2018 , 117, 146-153	12.9	93
407	QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. <i>Science China Life Sciences</i> , 2018 , 61, 1451-1462	8.5	53
406	Rejoinder to Comments on Zhu et al. (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[[Soil Biol. Biochem. 116 302B10]. Soil Biology and Biochemistry, 2018, 124, 275-276	7.5	5
405	Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China. <i>Environment International</i> , 2018 , 117, 292-299	12.9	66
404	Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil. <i>Journal of Microbiology</i> , 2018 , 56, 472-477	3	3
403	Propionicimonas ferrireducens sp. nov., isolated from dissimilatory iron(III)-reducing microbial enrichment obtained from paddy soil. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2018 , 68, 1914-1918	2.2	3
402	Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. <i>Environmental Science & Environmental Scien</i>	10.3	185
401	Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. <i>Soil Biology and Biochemistry</i> , 2018 , 116, 302-310	7.5	260
400	Relative importance of urban and non-urban land-use types for potential denitrification derived N2O: insights from a regional study. <i>Earth and Environmental Science Transactions of the Royal Society of Edinburgh</i> , 2018 , 109, 453-460	0.9	
399	Land Use Influences Antibiotic Resistance in the Microbiome of Soil Collembolans Orchesellides sinensis. <i>Environmental Science & Environmental Scienc</i>	10.3	30

(2017-2018)

398	Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. <i>Environment International</i> , 2018 , 121, 1155-1161	12.9	62
397	Rhizosphere microorganisms can influence the timing of plant flowering. <i>Microbiome</i> , 2018 , 6, 231	16.6	119
396	Increased copper levels inhibit denitrification in urban soils. <i>Earth and Environmental Science Transactions of the Royal Society of Edinburgh</i> , 2018 , 109, 421-427	0.9	2
395	Response to Comment on "Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere". <i>Environmental Science & Environmental Science & Envi</i>	10.3	
394	Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate. <i>Environmental Science & Environmental Scie</i>	10.3	98
393	Exposure of a Soil Collembolan to Ag Nanoparticles and AgNO Disturbs Its Associated Microbiota and Lowers the Incidence of Antibiotic Resistance Genes in the Gut. <i>Environmental Science & Technology</i> , 2018 , 52, 12748-12756	10.3	50
392	The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. <i>Microbiome</i> , 2018 , 6, 187	16.6	71
391	Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. <i>Soil Biology and Biochemistry</i> , 2018 , 126, 91-102	7.5	102
390	Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. <i>Soil Biology and Biochemistry</i> , 2018 , 122, 131-140	7.5	34
389	Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA. <i>Environmental Science & Environmental Sci</i>	10.3	29
388	Continental-scale pollution of estuaries with antibiotic resistance genes. <i>Nature Microbiology</i> , 2017 , 2, 16270	26.6	530
387	The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. <i>Journal of Cleaner Production</i> , 2017 , 148, 127-136	10.3	149
386	Bacterial resistance to arsenic protects against protist killing. <i>BioMetals</i> , 2017 , 30, 307-311	3.4	7
385	Optimizing Peri-URban Ecosystems (PURE) to re-couple urban-rural symbiosis. <i>Science of the Total Environment</i> , 2017 , 586, 1085-1090	10.2	58
384	Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. <i>Scientific Reports</i> , 2017 , 7, 42284	4.9	28
383	Quantitative detection of fecal contamination with domestic poultry feces in environments in China. <i>AMB Express</i> , 2017 , 7, 80	4.1	10
382	Land scale biogeography of arsenic biotransformation genes in estuarine wetland. <i>Environmental Microbiology</i> , 2017 , 19, 2468-2482	5.2	29
381	Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Monitor Nitrogen Assimilation at Both Bulk and Single-Cell Level. <i>Analytical Chemistry</i> , 2017 , 89, 5793-5800	7.8	32

380	Microbial mediated arsenic biotransformation in wetlands. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	45
379	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. <i>Environmental Science & Environmental Science & Envir</i>	10.3	123
378	Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. <i>Environmental Pollution</i> , 2017 , 228, 111-117	9.3	20
377	Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. <i>Chemosphere</i> , 2017 , 184, 53-61	8.4	62
376	Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. <i>Environmental Science & Environmental & Envi</i>	10.3	142
375	Anthropogenic Cycles of Arsenic in Mainland China: 1990-2010. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 1670-1678	10.3	39
374	Development and Application of the Diffusive Gradients in Thin Films Technique for the Measurement of Nitrate in Soils. <i>Analytical Chemistry</i> , 2017 , 89, 1178-1184	7.8	16
373	Application of genomic technologies to measure and monitor antibiotic resistance in animals. <i>Annals of the New York Academy of Sciences</i> , 2017 , 1388, 121-135	6.5	22
372	Metagenomic assembly unravel microbial response to redox fluctuation in acid sulfate soil. <i>Soil Biology and Biochemistry</i> , 2017 , 105, 244-252	7.5	13
	Toward a Comment of the board to Militarta Discomination of Favironmental Courses of		
371	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. <i>Environmental Science & Environmental Sc</i>	10.3	144
37 ¹ 37 ⁰			144
	Antibiotic Resistance. <i>Environmental Science & Environmental Science & Enviro</i>		
370	Antibiotic Resistance. <i>Environmental Science & Environmental Science & Enviro</i>	16.6	161
37° 369	Antibiotic Resistance. <i>Environmental Science & Environmental Sciences & Env</i>	16.6 6.4	161
37° 369 368	Antibiotic Resistance. Environmental Science &	16.6 6.4 33·3	161 23 162
37° 369 368 367	Antibiotic Resistance. Environmental Science &	16.6 6.4 33·3 4·9	161 23 162 40
370 369 368 367 366	Antibiotic Resistance. Environmental Science & Dournal of Environmental Science & Dournal of Environmental Sciences, 2017, 62, 138-144 Microbial mass movements. Science, 2017, 357, 1099-1100 Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Scientific Reports, 2017, 7, 7741 Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. Journal of Soils and Sediments, 2017, 17, 2831-2846 Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance	16.6 6.4 33.3 4.9	161 23 162 40 16

Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and 362 arsenic speciation in Phaseolus vulgaris L. *Environmental Science and Pollution Research*, **2017**, 24, 19524⁻⁵19534¹⁶ An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in 361 3.4 12 China. Journal of Soils and Sediments, 2017, 17, 2537-2546 Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, 360 52 7.5 China. Soil Biology and Biochemistry, 2017, 104, 59-67 Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than 138 12.9 359 conventionally produced?. Environment International, 2017, 98, 152-159 Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and 358 5.1 57 antibiotics in soil. Environmental Science and Pollution Research, 2017, 24, 701-710 Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biology, 2017, 2.8 357 121, 95-102 The antibiotic resistome of swine manure is significantly altered by association with the Musca 356 11.9 72 domestica larvae gut microbiome. ISME Journal, 2017, 11, 100-111 Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Frontiers in 6.2 94 355 Plant Science, 2017, 8, 268 Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Offers 354 5 5.7 Insights into Arsenic Resistance. Frontiers in Microbiology, 2017, 8, 60 Biochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in 353 5.7 15 Ferrihydrite Enrichments. Frontiers in Microbiology, 2017, 8, 589 Bacterial Survival in. Bio-protocol, 2017, 7, e2376 352 0.9 Determination of different arsenic species in food-grade spirulina powder by ion chromatography combined with inductively coupled plasma mass spectrometry. Journal of Separation Science, 2017, 351 9 3.4 40, 3655-3661 Impact of liming and drying municipal sewage sludge on the amount and availability of (14)C-acetyl 8 350 12.5 sulfamethoxazole and (14)C-acetaminophen residues. Water Research, 2016, 88, 156-163 Anthropogenic arsenic cycles: A research framework and features. Journal of Cleaner Production, 36 349 10.3 2016, 139, 328-336 A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. 348 4.1 44 Molecular Microbiology, 2016, 102, 628-641 Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. 10.3 78 347 Environmental Science & Environmental Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina 346 6.4 26 platensis. Journal of Environmental Sciences, 2016, 49, 162-168 Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate 345 25 Reducing Bacterium Bacillus oryziterrae sp. nov. Scientific Reports, 2016, 6, 34054

344	Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. <i>Nature Plants</i> , 2016 , 2, 15202	11.5	66
343	A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation. <i>Science Bulletin</i> , 2016 , 61, 1052-1060	10.6	33
342	Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils. <i>Journal of Soils and Sediments</i> , 2016 , 16, 1745-1753	3.4	13
341	Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. <i>Journal of Soils and Sediments</i> , 2016 , 16, 2657-2665	3.4	24
340	Quantification of the bioreactive Hg fraction in Chinese soils using luminescence-based biosensors. <i>Environmental Technology and Innovation</i> , 2016 , 5, 267-276	7	4
339	The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. <i>Soil Biology and Biochemistry</i> , 2016 , 100, 59-65	7.5	45
338	Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	51
337	Surface-Enhanced Raman Spectroscopy for Identification of Heavy Metal Arsenic(V)-Mediated Enhancing Effect on Antibiotic Resistance. <i>Analytical Chemistry</i> , 2016 , 88, 3164-70	7.8	38
336	Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. <i>Environmental Pollution</i> , 2016 , 211, 1-8	9.3	75
335	Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. Journal of Hazardous Materials, 2016 , 304, 18-25	12.8	118
335		12.8 5·7	118
	Journal of Hazardous Materials, 2016 , 304, 18-25		
334	Journal of Hazardous Materials, 2016, 304, 18-25 Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73 Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to	5.7	82
334	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73 Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Frontiers in Microbiology, 2016, 7, 636 An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 2016,	5·7 5·7	82
334 333 332	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73 Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Frontiers in Microbiology, 2016, 7, 636 An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 2016, 209, 746-61 Distribution of soil selenium in China is potentially controlled by deposition and volatilization?.	5·7 5·7 9.8	82 17 76
334 333 332 331	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73 Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Frontiers in Microbiology, 2016, 7, 636 An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 2016, 209, 746-61 Distribution of soil selenium in China is potentially controlled by deposition and volatilization?. Scientific Reports, 2016, 6, 20953 Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron	5·7 5·7 9.8 4·9	82 17 76 31
334 333 332 331 330	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73 Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Frontiers in Microbiology, 2016, 7, 636 An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 2016, 209, 746-61 Distribution of soil selenium in China is potentially controlled by deposition and volatilization?. Scientific Reports, 2016, 6, 20953 Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems. BioMetals, 2016, 29, 433-50 Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.	5·7 5·7 9.8 4·9	82 17 76 31 2

(2015-2016)

326	Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. <i>Environmental Science & Environmental Science & Envir</i>	10.3	23
325	Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 23406-23414	5.1	8
324	Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction. <i>Environmental Science & Environmental </i>	10.3	127
323	Impacts of reactive nitrogen on climate change in China. Scientific Reports, 2015, 5, 8118	4.9	31
322	Survival in amoebaa major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island". <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 5817-24	5.7	35
321	Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	20
320	Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. <i>Journal of Soils and Sediments</i> , 2015 , 15, 926-936	3.4	41
319	Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. <i>Journal of Soils and Sediments</i> , 2015 , 15, 1960-1967	3.4	43
318	Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. <i>Environment International</i> , 2015 , 85, 189-205	12.9	145
317	Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. <i>Standards in Genomic Sciences</i> , 2015 , 10, 35		20
316	Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. <i>Journal of Geochemical Exploration</i> , 2015 , 148, 189-195	3.8	154
315	Soil contamination in China: current status and mitigation strategies. <i>Environmental Science & Environmental </i>	10.3	988
314	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. <i>ISME Journal</i> , 2015 , 9, 1269-79	11.9	643
313	Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 938-47	4.8	97
312	Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. <i>Molecular Ecology</i> , 2015 , 24, 136-50	5.7	134
311	Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing. <i>ISME Journal</i> , 2015 , 9, 721-34	11.9	96
310	Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 522-32	4.8	49
309	Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. <i>Scientific Reports</i> , 2015 , 5, 13258	4.9	21

308	Transcriptional profiling of the soil invertebrate Folsomia candida in pentachlorophenol-contaminated soil. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1362-8	3.8	11
307	Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	134
306	Antibiotic resistome and its association with bacterial communities during sewage sludge composting. <i>Environmental Science & Environmental Science & </i>	10.3	526
305	Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. <i>Environmental Science & Environmental Scie</i>	10.3	41
304	Antibiotic resistance genes in manure-amended soil and vegetables at harvest. <i>Journal of Hazardous Materials</i> , 2015 , 299, 215-21	12.8	185
303	Protecting global soil resources for ecosystem services. <i>Ecosystem Health and Sustainability</i> , 2015 , 1, 1-4	3.7	6
302	Arsenic Demethylation by a CIAs Lyase in Cyanobacterium Nostoc sp. PCC 7120. <i>Environmental Science & Environmental Science & </i>	10.3	39
301	Research and Application of Analytical Technique on ¶8Op of Inorganic Phosphate in Soil. <i>Chinese Journal of Analytical Chemistry</i> , 2015 , 43, 187-192	1.6	6
300	Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. <i>Environmental Science & Environmental Science & </i>	10.3	43
299	Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. <i>ISME Journal</i> , 2015 , 9, 2059-67	11.9	78
298	Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. <i>Journal of Proteome Research</i> , 2015 , 14, 1127-36	5.6	41
297	Food systems and life expectancy with rapid urbanisation in provincial China. <i>Asia Pacific Journal of Clinical Nutrition</i> , 2015 , 24, 731-43	1	1
296	Preferred ecosystem characteristics: their food and health relevance to China's rapid urbanisation. <i>Asia Pacific Journal of Clinical Nutrition</i> , 2015 , 24, 556-74	1	
295	Compaction stimulates denitrification in an urban park soil using [N] tracing technique. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 3783-91	5.1	15
294	Rhizosphere effect has no effect on marker genes related to autotrophic CO2 fixation in paddy soils?. <i>Journal of Soils and Sediments</i> , 2014 , 14, 1082-1087	3.4	9
293	Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. <i>Environment International</i> , 2014 , 65, 9-15	12.9	120
292	Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. <i>FEMS Microbiology Ecology</i> , 2014 , 88, 372-85	4.3	37
291	Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. <i>Environment International</i> , 2014 , 68, 154-61	12.9	129

290	Biosensor for organoarsenical herbicides and growth promoters. <i>Environmental Science & Environmental </i>	10.3	47
289	Lead in rice: analysis of baseline lead levels in market and field collected rice grains. <i>Science of the Total Environment</i> , 2014 , 485-486, 428-434	10.2	53
288	Imaging element distribution and speciation in plant cells. <i>Trends in Plant Science</i> , 2014 , 19, 183-92	13.1	113
287	Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42, 443-	4<u>6</u>7 .3	304
286	Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A. <i>Environmental Science & Environmental Science & Environme</i>	10.3	46
285	Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana. <i>Environmental Science & Environmental Science & Envir</i>	10.3	26
284	Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. <i>Environmental Science & Environmental </i>	10.3	305
283	Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 10337-44	10.3	76
282	Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 1001-7	10.3	126
281	High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. <i>Environmental Science & Environmental S</i>	10.3	255
280	Mineral weathering and element cycling in soil-microorganism-plant system. <i>Science China Earth Sciences</i> , 2014 , 57, 888-896	4.6	31
279	Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. <i>Environmental Science & Environmental Science & Envi</i>	10.3	56
278	Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	157
277	Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. <i>Aquatic Toxicology</i> , 2014 , 149, 50-7	5.1	19
276	Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1080-9	6.4	19
275	Genome sequence of the anaerobic bacterium Bacillus sp. strain ZYK, a selenite and nitrate reducer from paddy soil. <i>Standards in Genomic Sciences</i> , 2014 , 9, 646-54		5
274	Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. <i>Environmental Chemistry</i> , 2014 , 11, 506	3.2	30
273	Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 89-101	4.3	36

272	Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 182-92	4.3	59
271	Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	98
270	Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. <i>PLoS ONE</i> , 2014 , 9, e89685	3.7	132
269	Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. <i>Environmental Pollution</i> , 2014 , 184, 247-53	9.3	115
268	Managing urban nutrient biogeochemistry for sustainable urbanization. <i>Environmental Pollution</i> , 2014 , 192, 244-50	9.3	46
267	A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. <i>Journal of Environmental Sciences</i> , 2014 , 26, 371-81	6.4	107
266	Arsenic volatilization in model anaerobic biogas digesters. <i>Applied Geochemistry</i> , 2013 , 33, 294-297	3.5	34
265	Bacterial communities predominant in the degradation of 13C(4)-4,5,9,10-pyrene during composting. <i>Bioresource Technology</i> , 2013 , 143, 608-14	11	36
264	Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. <i>Environmental Science & Environmental Science & Environm</i>	10.3	328
263	Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. <i>Chemosphere</i> , 2013 , 93, 47-53	8.4	68
262	Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a han chinese population. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 8843-51	10.3	30
261	Application of Microbial Biosensors to Complement Geochemical Characterisation: a Case Study in Northern China. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	1
260	Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China. <i>Journal of Environmental Sciences</i> , 2013 , 25, 144-54	6.4	36
259	Effect of long-term wastewater irrigation on potential denitrification and denitrifying communities in soils at the watershed scale. <i>Environmental Science & Environmental Sc</i>	10.3	89
258	Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain. <i>Journal of Applied Microbiology</i> , 2013 , 114, 703-12	4.7	15
257	Microbial arsenic methylation in soil and rice rhizosphere. <i>Environmental Science & Environmental Env</i>	10.3	172
256	Effects of microbial processes on the fate of arsenic in paddy soil. <i>Science Bulletin</i> , 2013 , 58, 186-193		34
255	Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil. <i>Plant and Soil</i> , 2013 , 365, 387-396	4.2	20

254	Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environmental Science & Environmental Science & Environmen	10.3	205
253	Variation in rice cadmium related to human exposure. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 5613-8	10.3	274
252	Association of arsenic with nutrient elements in rice plants. <i>Metallomics</i> , 2013 , 5, 784-92	4.5	78
251	Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. <i>Environmental Science & Environmental Science & Env</i>	10.3	125
250	Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. <i>International Journal of Phytoremediation</i> , 2013 , 15, 385-97	3.9	25
249	Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. <i>Environmental Health Perspectives</i> , 2013 , 121, 878-85	8.4	505
248	Diverse and abundant antibiotic resistance genes in Chinese swine farms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3435-40	11.5	1416
247	Engineering the soil bacterium Pseudomonas putida for arsenic methylation. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 4493-5	4.8	68
246	Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2052-7	11.5	211
245	Arsenite elicits anomalous sulfur starvation responses in barley. <i>Plant Physiology</i> , 2013 , 162, 401-9	6.6	15
244	Influence of humans on evolution and mobilization of environmental antibiotic resistome. <i>Emerging Infectious Diseases</i> , 2013 , 19,	10.2	99
243	Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. <i>European Journal of Protistology</i> , 2012 , 48, 227-36	3.6	16
242	Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. <i>Environmental Pollution</i> , 2012 , 165, 18-24	9.3	40
241	A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. <i>Bioresource Technology</i> , 2012 , 108, 55-9	11	108
240	Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. <i>Journal of Environmental Sciences</i> , 2012 , 24, 690-8	6.4	136
239	Urban Phosphorus Metabolism through Food Consumption. Journal of Industrial Ecology, 2012, 16, 588-	·5 /9 . 9	82
238	Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. <i>Annals of Applied Biology</i> , 2012 , 161, 46-56	2.6	35
237	Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. <i>Journal of Soils and Sediments</i> , 2012 , 12, 402-410	3.4	25

236	Trace metal contamination in urban soils of China. Science of the Total Environment, 2012, 421-422, 17-3	Q 10.2	353
235	Modelling of organic matter dynamics during the composting process. <i>Waste Management</i> , 2012 , 32, 19-30	8.6	59
234	Arsenic biomethylation by photosynthetic organisms. <i>Trends in Plant Science</i> , 2012 , 17, 155-62	13.1	168
233	Conversion, sorption, and transport of arsenic species in geological media. <i>Applied Geochemistry</i> , 2012 , 27, 2197-2203	3.5	7
232	Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. <i>Environmental Health</i> , 2012 , 11, 46	6	60
231	Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	111
230	Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. <i>Environmental Science & Environmental Science</i>	10.3	162
229	Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. <i>Environmental Science & Environmental Science </i>	10.3	120
228	Urban sustainability and human health in China, East Asia and Southeast Asia. <i>Current Opinion in Environmental Sustainability</i> , 2012 , 4, 436-442	7.2	24
227	Rice consumption contributes to low level methylmercury exposure in southern China. <i>Environment International</i> , 2012 , 49, 18-23	12.9	78
226	Utilization of urban sewage sludge: Chinese perspectives. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 1454-63	5.1	136
225	Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytologist, 2012 , 193, 650-664	9.8	108
224	Draft genome sequence of a novel bacterial strain, LSJC7, belonging to the family Enterobacteriaceae with dual resistance to arsenic and tetracycline. <i>Journal of Bacteriology</i> , 2012 , 194, 7005-6	3.5	6
223	Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?. <i>Journal of Experimental Botany</i> , 2012 , 63, 2961-70	7	93
222	A novel biosensor selective for organoarsenicals. Applied and Environmental Microbiology, 2012, 78, 714	5 ₄ 78	17
221	Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. <i>Journal of Experimental Botany</i> , 2011 , 62, 2889-98	7	114
220	Identification of tetramethylarsonium in rice grains with elevated arsenic content. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 32-4		47
219	A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk. <i>Environment International</i> , 2011 , 37, 889-92	12.9	7

218	Inorganic arsenic in Chinese food and its cancer risk. <i>Environment International</i> , 2011 , 37, 1219-25	12.9	251
217	Spatial distribution of arsenic and temporal variation of its concentration in rice. <i>New Phytologist</i> , 2011 , 189, 200-9	9.8	106
216	Arsenic biotransformation and volatilization in transgenic rice. New Phytologist, 2011, 191, 49-56	9.8	102
215	Assessment of the solubility and bioaccessibility of arsenic in realgar wine using a simulated gastrointestinal system. <i>Science of the Total Environment</i> , 2011 , 409, 2357-60	10.2	13
214	Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. <i>Environmental and Experimental Botany</i> , 2011 , 71, 416-416	5.9	71
213	Rapid biotransformation of arsenic by a model protozoan Tetrahymena pyriformis GL-C. [corrected]. <i>Environmental Pollution</i> , 2011 , 159, 837-40	9.3	38
212	Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil. <i>Environmental Pollution</i> , 2011 , 159, 1886-95	9.3	61
211	Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. <i>Environmental Pollution</i> , 2011 , 159, 2427-34	9.3	160
210	Material flow analysis of phosphorus through food consumption in two megacities in northern China. <i>Chemosphere</i> , 2011 , 84, 773-8	8.4	41
209	Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 1574-84	5.1	40
208	Pyrene effects on methanotroph community and methane oxidation rate, tested by doselesponse experiment and resistance and resilience experiment. <i>Journal of Soils and Sediments</i> , 2011 , 11, 312-321	3.4	11
207	Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. <i>Journal of Soils and Sediments</i> , 2011 , 11, 1234-	1342	68
206	Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3026-39		15
205	Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 433-9		35
204	Understanding and harnessing the health effects of rapid urbanization in China. <i>Environmental Science & Environmental Science</i>	10.3	112
203	Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: how does it affect functional microbial abundance?. <i>Environmental Science & Environmental S</i>	10.3	41
202	Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. <i>Environmental Science & Environmental Science & Environ</i>	10.3	61
201	Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. <i>Plant Physiology</i> , 2011 , 156, 1631-8	6.6	154

200	Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. <i>Environmental Science & Environmental Science & Envir</i>	10.3	119
199	Arsenic shoot-grain relationships in field grown rice cultivars. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	51
198	Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.). <i>Environmental Science & Environmental Science & Environment</i>	10.3	90
197	Urbanisation and health in China. <i>Lancet, The</i> , 2010 , 376, 232-3	40	15
196	Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. <i>Environmental Science & Environmental Science & Environ</i>	10.3	264
195	Botanical composition, production and nutrient status of an originally Lolium perenne-dominant cut grass sward receiving long-term manure applications. <i>Plant and Soil</i> , 2010 , 326, 355-367	4.2	22
194	C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. <i>Plant and Soil</i> , 2010 , 326, 21-29	4.2	32
193	Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. <i>Environmental Pollution</i> , 2010 , 158, 2872-9	9.3	44
192	Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 294-300	3.8	16
191	Biogeochemical Processes of Arsenic in Paddy Soils 2010 , 47-48		
191 190	Biogeochemical Processes of Arsenic in Paddy Soils 2010 , 47-48 Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54	11.6	92
	Control of cell proliferation, organ growth, and DNA damage response operate independently of		92
190	Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54 Selenium characterization in the global rice supply chain. <i>Environmental Science & Environmental & Environ</i>		
190 189	Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54 Selenium characterization in the global rice supply chain. <i>Environmental Science & Description</i> , 2009 , 43, 6024-30 Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza	10.3	162
190 189 188	Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54 Selenium characterization in the global rice supply chain. <i>Environmental Science & Description</i> , 2009 , 43, 6024-30 Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 930-935 Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated	10.3 7.5	162 67
190 189 188	Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54 Selenium characterization in the global rice supply chain. <i>Environmental Science & Description of Computer Science & Descrip</i>	7·5 11.4	1626784
190 189 188 187 186	Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. <i>Plant Cell</i> , 2009 , 21, 3641-54 Selenium characterization in the global rice supply chain. <i>Environmental Science & Description</i> , 2009 , 43, 6024-30 Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 930-935 Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?. <i>Current Opinion in Biotechnology</i> , 2009 , 20, 220-4 Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria?. <i>Plant and Soil</i> , 2009 , 324, 209-217 Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China.	10.3 7.5 11.4 4.2	162678447

(2009-2009)

182	Urban conservation and environmental protection in China: a major effort by the Chinese Academy of Sciences. <i>Conservation Biology</i> , 2009 , 23, 546-7	6	2
181	Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. <i>New Phytologist</i> , 2009 , 182, 421-428	9.8	91
180	Speciation and distribution of arsenic and localization of nutrients in rice grains. <i>New Phytologist</i> , 2009 , 184, 193-201	9.8	202
179	An inventory of trace element inputs to agricultural soils in China. <i>Journal of Environmental Management</i> , 2009 , 90, 2524-30	7.9	393
178	Arsenate toxicity for wheat and lettuce in six Chinese soils with different properties. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1946-50	3.8	16
177	Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2255-62	3.8	20
176	Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. <i>Environmental Science & Environmental Science & Environmenta</i>	6 ¹ 0.3	67
175	Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. <i>Environment International</i> , 2009 , 35, 473-5	12.9	129
174	Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China. <i>Environmental Pollution</i> , 2009 , 157, 707-9	9.3	26
173	Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. <i>Environmental Pollution</i> , 2009 , 157, 1613-8	9.3	37
172	Interactions of mixed organic contaminants in uptake by rice seedlings. <i>Chemosphere</i> , 2009 , 74, 890-5	8.4	9
171	Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. <i>Geoderma</i> , 2009 , 153, 130-135	6.7	85
170	Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. <i>Trends in Plant Science</i> , 2009 , 14, 436-42	13.1	394
169	Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice?. <i>Journal of Plant Physiology</i> , 2009 , 166, 20-31	3.6	108
168	Arsenic limits trace mineral nutrition (selenium, zinc, and nickel) in Bangladesh rice grain. <i>Environmental Science & Environmental Science & Environ</i>	10.3	80
167	Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 637-42	10.3	361
166	Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	125
165	Chapter 8 Principles and Technologies for Remediation of Uranium-Contaminated Environments. <i>Radioactivity in the Environment</i> , 2009 , 14, 357-374		2

164	The importance of the 'international collaboration dividend': the case of China. <i>Science and Public Policy</i> , 2009 , 36, 723-735	1.8	4
163	Geographical variation in total and inorganic arsenic content of polished (white) rice. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	558
162	Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies?. <i>ISME Journal</i> , 2008 , 2, 254-64	11.9	136
161	Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). <i>New Phytologist</i> , 2008 , 177, 350-356	9.8	87
160	Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. <i>New Phytologist</i> , 2008 , 180, 434-441	9.8	135
159	Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. <i>Environmental Microbiology</i> , 2008 , 10, 1601-11	5.2	430
158	Ammonia-oxidizing archaea: important players in paddy rhizosphere soil?. <i>Environmental Microbiology</i> , 2008 , 10, 1978-87	5.2	302
157	Tracing the behaviour of hexachlorobenzene in a paddy soil-rice system over a growth season. Journal of Environmental Sciences, 2008, 20, 56-61	6.4	12
156	Does copper reduce cadmium uptake by different rice genotypes?. <i>Journal of Environmental Sciences</i> , 2008 , 20, 332-8	6.4	18
155	Microbial DNA extraction and analyses of soil ironthanganese nodules. <i>Soil Biology and Biochemistry</i> , 2008 , 40, 1364-1369	7.5	22
154	Speciation and localization of arsenic in white and brown rice grains. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1051-7	10.3	284
153	Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. <i>Environmental Science & Technology</i> , 2008 , 42, 7542-6	10.3	247
152	High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. <i>Environmental Science & Documental Science </i>	10.3	346
151	Bacterial Communities Inside and Surrounding Soil Iron-Manganese Nodules. <i>Geomicrobiology Journal</i> , 2008 , 25, 14-24	2.5	50
150	Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. <i>Environmental Pollution</i> , 2008 , 152, 686-92	9.3	1366
149	Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. <i>Environmental Pollution</i> , 2008 , 155, 174-81	9.3	99
148	Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. <i>Environmental Pollution</i> , 2008 , 155, 359-65	9.3	79
147	Inorganic arsenic levels in baby rice are of concern. <i>Environmental Pollution</i> , 2008 , 152, 746-9	9.3	154

146	Exposure to inorganic arsenic from rice: a global health issue?. Environmental Pollution, 2008, 154, 169-	75 .3	298
145	Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. <i>Environmental Pollution</i> , 2008 , 156, 1149-55	9.3	76
144	Effects of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. <i>Geoderma</i> , 2008 , 146, 370-377	6.7	40
143	Relationships Between Agronomic and Environmental Soil Test Phosphorus in Three Typical Cultivated Soils in China. <i>Pedosphere</i> , 2008 , 18, 795-800	5	7
142	Effect of Long-Term Application of Chemical Fertilizers on Microbial Biomass and Functional Diversity of a Black Soil . <i>Pedosphere</i> , 2008 , 18, 801-808	5	34
141	Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?. <i>Journal of Plant Nutrition and Soil Science</i> , 2008 , 171, 193-199	2.3	40
140	Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. <i>International Journal of Sustainable Development and World Ecology</i> , 2008 , 15, 345-349	3.8	5
139	Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst. <i>Plant and Soil</i> , 2008 , 307, 123-134	4.2	58
138	Influences of phosphorus starvation on OsACR2.1 expression and arsenic metabolism in rice seedlings. <i>Plant and Soil</i> , 2008 , 313, 129-139	4.2	8
137	Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 344-53	5.1	38
136	Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactivity, 2008 , 99, 801-10	2.4	32
135	Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. <i>Journal of Hazardous Materials</i> , 2008 , 152, 506-15	12.8	185
134	Arsenic bioavailability in the soil amended with leaves of arsenic hyperaccumulator, Chinese brake fern (Pteris vittata L). <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 126-30	3.8	5
133	Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 413-9	3.8	77
132	Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 881-7	3.8	61
131	Gene structure and expression of the high-affinity nitrate transport system in rice roots. <i>Journal of Integrative Plant Biology</i> , 2008 , 50, 443-51	8.3	75
130	Improved approaches for modeling the sorption of phenanthrene by a range of plant species. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	40
129	Effects of exposure time and co-existing organic compounds on uptake of atrazine from nutrient solution by rice seedlings (Oryza sativa L.). <i>Journal of Hazardous Materials</i> , 2007 , 141, 223-9	12.8	8

128	Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. <i>Journal of Hazardous Materials</i> , 2007 , 148, 377-82	12.8	44
127	A CDC25 homologue from rice functions as an arsenate reductase. <i>New Phytologist</i> , 2007 , 174, 311-321	9.8	150
126	Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. <i>Environmental Microbiology</i> , 2007 , 9, 2364-74	5.2	755
125	Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. <i>Environmental Microbiology</i> , 2007 , 9, 3152-3152	5.2	29
124	Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine. <i>Journal of Integrative Plant Biology</i> , 2007 , 49, 1719-1725	8.3	22
123	Which ornamental plant species effectively remove benzene from indoor air?. <i>Atmospheric Environment</i> , 2007 , 41, 650-654	5.3	90
122	The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. <i>Science of the Total Environment</i> , 2007 , 379, 226-34	10.2	118
121	Does long-term fertilization treatment affect the response of soil ammonia-oxidizing bacterial communities to Zn contamination?. <i>Plant and Soil</i> , 2007 , 301, 245-254	4.2	10
12 0	Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. <i>Environmental Geochemistry and Health</i> , 2007 , 29, 473-81	4.7	55
119	Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without vegetation. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 65-72	2.3	15
118	Effects of soil moisture and plant interactions on the soil microbial community structure. <i>European Journal of Soil Biology</i> , 2007 , 43, 31-38	2.9	84
117	Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. <i>Environmental Pollution</i> , 2007 , 147, 374-80	9.3	134
116	Ground-level ozone in China: distribution and effects on crop yields. <i>Environmental Pollution</i> , 2007 , 147, 394-400	9.3	142
115	Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). <i>Environmental Pollution</i> , 2007 , 145, 387-90	9.3	76
114	Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. <i>Environmental Pollution</i> , 2007 , 147, 422-8	9.3	693
113	Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. <i>Environmental Pollution</i> , 2007 , 147, 387-93	9.3	132
112	Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. <i>Environmental Pollution</i> , 2007 , 146, 452-7	9.3	57
111	Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). <i>Environmental Pollution</i> , 2007 , 147, 187-93	9.3	153

(2006-2007)

110	Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. <i>Environmental Pollution</i> , 2007 , 147, 743-9	9.3	177
109	Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?. <i>Environmental Pollution</i> , 2007 , 148, 251-7	9.3	79
108	Where do Chinese scientists publish their research in environmental science and technology?. <i>Environmental Pollution</i> , 2007 , 147, 1-3	9.3	4
107	DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters. <i>Environmental Pollution</i> , 2007 , 148, 141-7	9.3	37
106	Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. <i>Environmental Pollution</i> , 2007 , 148, 94-100	9.3	73
105	The impact of sewage irrigation on the uptake of mercury in corn plants (Zea mays) from suburban Beijing. <i>Environmental Pollution</i> , 2007 , 149, 246-51	9.3	20
104	An analysis of papers published in Environmental Pollution in 2006: a continuing pattern of advancement and success. <i>Environmental Pollution</i> , 2007 , 150, 2-4	9.3	
103	The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. <i>Chemosphere</i> , 2007 , 66, 1183-90	8.4	93
102	Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres. <i>Journal of Environmental Sciences</i> , 2006 , 18, 1101-6	6.4	15
101	Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines. <i>Annals of Botany</i> , 2006 , 98, 631-6	4.1	33
100	Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	405
99	Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: silica and alumina. <i>Environmental Science & Environmental Scien</i>	10.3	51
98	Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). <i>Environmental Science & Environmental </i>	10.3	331
97	Leaf Chlorophyll Readings as an Indicator for Spinach Yield and Nutritional Quality with Different Nitrogen Fertilizer Applications. <i>Journal of Plant Nutrition</i> , 2006 , 29, 1207-1217	2.3	35
96	Genotoxic risk identification of soil contamination at a major industrialized city in northeast China by a combination of in vitro and in vivo bioassays. <i>Environmental Science & Environmental Scien</i>	10.3	23
95	Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. <i>Catena</i> , 2006 , 65, 41-48	5.8	91
94	Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). <i>Chemosphere</i> , 2006 , 62, 608-15	8.4	42
93	Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. <i>Chemosphere</i> , 2006 , 62, 1464-73	8.4	68

92	Oxalate and root exudates enhance the desorption of p,p'-DDT from soils. <i>Chemosphere</i> , 2006 , 63, 127	3 -9 .4	51
91	Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. <i>Chemosphere</i> , 2006 , 64, 1627-32	8.4	22
90	Adsorption (AsIII,V) and oxidation (AsIII) of arsenic by pedogenic Fellin nodules. <i>Geoderma</i> , 2006 , 136, 566-572	6.7	28
89	The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. <i>Environment International</i> , 2006 , 32, 682-9	12.9	119
88	Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. <i>Environmental Pollution</i> , 2006 , 139, 32-9	9.3	45
87	Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. <i>Environmental Pollution</i> , 2006 , 139, 433-9	9.3	73
86	Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. <i>Environmental Pollution</i> , 2006 , 140, 279-85	9.3	87
85	The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. <i>Environmental Pollution</i> , 2006 , 143, 129-37	9.3	178
84	Fast moves in arbuscular mycorrhizal symbiotic signalling. <i>Trends in Plant Science</i> , 2006 , 11, 369-71	13.1	19
83	Importance of plant species and external silicon concentration to active silicon uptake and transport. <i>New Phytologist</i> , 2006 , 172, 63-72	9.8	144
82	Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. <i>New Phytologist</i> , 2006 , 172, 536-43	9.8	173
81	Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. <i>Annals of Applied Biology</i> , 2006 , 149, 305-312	2.6	41
80	Introgression of Resistance to Powdery Mildew Conferred by Chromosome 2R by Crossing Wheat Nullisomic 2D with Rye. <i>Journal of Integrative Plant Biology</i> , 2006 , 48, 838-847	8.3	22
79	The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. <i>Journal of Hazardous Materials</i> , 2006 , 134, 74-9	12.8	81
78	Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2366-73	3.8	70
77	Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and extended X-ray absorption fine-structure spectroscopy. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 3118-24	3.8	19
76	Humic Acids Increase the Phytoavailability of Cd and Pb to Wheat Plants Cultivated in Freshly Spiked, Contaminated Soil (7 pp). <i>Journal of Soils and Sediments</i> , 2006 , 6, 236-242	3.4	62
75	Arsenate Causes Differential Acute Toxicity to Two P-deprived Genotypes of Rice Seedlings (Oryza sativa L.). <i>Plant and Soil</i> , 2006 , 279, 297-306	4.2	42

(2005-2006)

74	Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). <i>Plant and Soil</i> , 2006 , 284, 73-84	4.2	122
73	Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. <i>Plant and Soil</i> , 2006 , 289, 301-308	4.2	51
72	Effects of Oxalate and Humic Acid on Arsenate Sorption by and Desorption from a Chinese Red Soil. <i>Water, Air, and Soil Pollution</i> , 2006 , 176, 269-283	2.6	12
71	Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. <i>Plant and Soil</i> , 2005 , 275, 349-359	4.2	35
70	Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. <i>Plant Physiology</i> , 2005 , 138, 461-9	6.6	160
69	Effect of Zinc on Cadmium Toxicity-Induced Oxidative Stress in Winter Wheat Seedlings. <i>Journal of Plant Nutrition</i> , 2005 , 28, 1947-1959	2.3	27
68	Evaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Areas, China. <i>Catena</i> , 2005 , 59, 19-33	5.8	37
67	Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. <i>Chemosphere</i> , 2005 , 61, 293-301	8.4	162
66	Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.). <i>Chemosphere</i> , 2005 , 60, 802-9	8.4	33
65	Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. <i>Environment International</i> , 2005 , 31, 784-90	12.9	199
64	Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. <i>Environment International</i> , 2005 , 31, 822-8	12.9	232
63	Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. <i>Environment International</i> , 2005 , 31, 867-73	12.9	55
62	Adsorption of arsenate on soils. Part 1: laboratory batch experiments using 16 Chinese soils with different physiochemical properties. <i>Environmental Pollution</i> , 2005 , 138, 278-84	9.3	43
61	Adsorption of arsenate on soils. Part 2: modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. <i>Environmental Pollution</i> , 2005 , 138, 285-9	9.3	50
60	Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. <i>Aquatic Botany</i> , 2005 , 83, 321-331	1.8	62
59	Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution. <i>Environmental Science and Pollution Research</i> , 2005 , 12, 21-7	5.1	8
58	The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. <i>Environmental Science and Pollution Research</i> , 2005 , 12, 325-31	5.1	30
57	Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. <i>New Phytologist</i> , 2005 , 165, 91-7	9.8	245

56	Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. <i>New Phytologist</i> , 2005 , 165, 591-8	9.8	74
55	Organic acids promote the uptake of lanthanum by barley roots. <i>New Phytologist</i> , 2005 , 165, 481-92	9.8	72
54	Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. <i>Plant, Cell and Environment</i> , 2005 , 28, 928-938	8.4	76
53	Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. <i>Environmental and Experimental Botany</i> , 2005 , 54, 1-7	5.9	94
52	Co-uptake of atrazine and mercury by rice seedlings from water. <i>Pesticide Biochemistry and Physiology</i> , 2005 , 82, 226-232	4.9	13
51	Evaluation of genotoxicity of combined pollution by cadmium and atrazine. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 74, 589-96	2.7	13
50	Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. <i>Journal of Environmental Radioactivity</i> , 2005 , 82, 223-36	2.4	124
49	Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. <i>Mycorrhiza</i> , 2005 , 15, 187-92	3.9	109
48	Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. <i>Environmental Geochemistry and Health</i> , 2005 , 27, 169-76	4.7	64
47	Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. <i>Plant and Soil</i> , 2005 , 272, 173-181	4.2	99
46	Effects of Iron and Manganese Plaques on Arsenic Uptake by Rice Seedlings (Oryza sativa L.) Grown in Solution Culture Supplied with Arsenate and Arsenite. <i>Plant and Soil</i> , 2005 , 277, 127-138	4.2	136
45	Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply. <i>Plant and Soil</i> , 2005 , 277, 221-232	4.2	60
44	Effects of Boron on Leaf Expansion and Intercellular Airspaces in Mung Bean in Solution Culture. <i>Journal of Plant Nutrition</i> , 2005 , 28, 351-361	2.3	7
43	Uptake and Translocation of Arsenic and Phosphorus in pho2 Mutant and Wild Type of Arabidopsis thaliana. <i>Journal of Plant Nutrition</i> , 2005 , 28, 1323-1336	2.3	7
42	Environmental sustainability index of Shandong Province, China. <i>International Journal of Sustainable Development and World Ecology</i> , 2004 , 11, 227-233	3.8	11
41	Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?. <i>Journal of Experimental Botany</i> , 2004 , 55, 1707-13	7	219
40	Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?. <i>New Phytologist</i> , 2004 , 162, 481-488	9.8	254
39	Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. <i>Biological Trace Element Research</i> , 2004 , 101, 265-76	4.5	78

(2003-2004)

38	Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. <i>Plant and Soil</i> , 2004 , 261, 99-105	4.2	42
37	An assessment of the usefulness of solution culture in screening for phosphorus efficiency in wheat. <i>Plant and Soil</i> , 2004 , 261, 91-97	4.2	19
36	Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing, China. <i>Plant and Soil</i> , 2004 , 261, 47-54	4.2	112
35	Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. <i>Environment International</i> , 2004 , 30, 351-6	12.9	88
34	Adsorption and desorption of iodine by various Chinese soils: I. Iodate. <i>Environment International</i> , 2004 , 30, 525-30	12.9	50
33	Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. <i>Environment International</i> , 2004 , 30, 531-7	12.9	46
32	Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. <i>Environment International</i> , 2004 , 30, 785-91	12.9	512
31	Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. <i>Trends in Plant Science</i> , 2004 , 9, 7-9	13.1	225
30	Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). <i>Environment International</i> , 2004 , 29, 973-8	12.9	77
29	Ecological footprint of Shandong, China. <i>Journal of Environmental Sciences</i> , 2004 , 16, 167-72	6.4	3
28	Cadmium uptake by different rice genotypes that produce white or dark grains. <i>Journal of Environmental Sciences</i> , 2004 , 16, 962-7	6.4	7
27	The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. <i>Plant and Soil</i> , 2003 , 251, 237-245	4.2	99
26	Effect of zinc-cadmium interactions on the uptake of zinc and cadmium by winter wheat (Triticum aestivum) grown in pot culture. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2003 , 71, 1289-	96 ⁷	21
25	Toxicity issues associated with geogenic arsenic in the groundwater-soil-plant-human continuum. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2003 , 71, 1100-7	2.7	18
24	Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. <i>Mycorrhiza</i> , 2003 , 13, 93-100	3.9	68
23	Phosphorus Zinc Interactions in Two Barley Cultivars Differing in Phosphorus and Zinc Efficiencies. <i>Journal of Plant Nutrition</i> , 2003 , 26, 1085-1099	2.3	29
22	Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. <i>Environment International</i> , 2003 , 29, 33-7	12.9	112
21	Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. <i>Trends in Plant Science</i> , 2003 , 8, 407	719.1	238

20	Effect of external potassium supply and plant age on the uptake of radiocaesium (137Cs) by broad bean (Vicia faba): interpretation of results from a large-scale hydroponic study. <i>Environmental and Experimental Botany</i> , 2002 , 47, 173-187	5.9	18
19	Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound Source. <i>Plant and Soil</i> , 2002 , 239, 1-8	4.2	32
18	INTERACTIONS BETWEEN SOIL MOISTURE CONTENT AND PHOSPHORUS SUPPLY IN SPRING WHEAT PLANTS GROWN IN POT CULTURE. <i>Journal of Plant Nutrition</i> , 2002 , 25, 913-925	2.3	32
17	Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. <i>Australian Journal of Agricultural Research</i> , 2002 , 53, 211		28
16	Effect of external potassium (K) supply on the uptake of 137Cs by spring wheat (Triticum aestivum cv. Tonic): a large-scale hydroponic study. <i>Journal of Environmental Radioactivity</i> , 2001 , 55, 303-14	2.4	26
15	Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi 2001 , 231, 105-112		52
14	Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. <i>Plant and Soil</i> , 2001 , 237, 249-255	4.2	130
13	Zinc (Zn)-phosphorus (P) Interactions in Two Cultivars of Spring Wheat (Triticum aestivum L.) Differing in P Uptake Efficiency. <i>Annals of Botany</i> , 2001 , 88, 941-945	4.1	71
12	Backseat driving? Accessing phosphate beyond the rhizosphere-depletion zone. <i>Trends in Plant Science</i> , 2001 , 6, 194-5	13.1	27
11	Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. <i>Chemosphere</i> , 2001 , 42, 193-9	8.4	90
10	Capillary gel electrophoretic separation of superoxide dismutases in leaf extracts of Triticum aestivum L <i>Phytochemical Analysis</i> , 2000 , 11, 362-365	3.4	1
9	The specificity of arbuscular mycorrhizal fungi in perennial ryegrassWhite clover pasture. <i>Agriculture, Ecosystems and Environment</i> , 2000 , 77, 211-218	5.7	34
8	Effect of potassium starvation on the uptake of radiocaesium by spring wheat (Triticum aestivum cv. Tonic). <i>Plant and Soil</i> , 2000 , 220, 27-34	4.2	29
7	Plant uptake of radiocaesium: a review of mechanisms, regulation and application. <i>Journal of Experimental Botany</i> , 2000 , 51, 1635-45	7	331
6	Soil contamination with radionuclides and potential remediation. <i>Chemosphere</i> , 2000 , 41, 121-8	8.4	122
5	Effects of External Potassium Supply on Compartmentation and Flux Characteristics of Radiocaesium in Intact Spring Wheat Roots. <i>Annals of Botany</i> , 1999 , 84, 639-644	4.1	20
4	Soil metaphenomics: a step forward in metagenomics. Archives of Agronomy and Soil Science,1-19	2	О
3	The enigma of environmental organoarsenicals: Insights and implications. <i>Critical Reviews in Environmental Science and Technology</i> ,1-28	11.1	3

LIST OF PUBLICATIONS

Tire wear particles: An emerging threat to soil health. *Critical Reviews in Environmental Science and Technology*,1-19

11.1 1

Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. *Soil Ecology Letters*,1

2.7