Owain Rhys Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029978/publications.pdf

Version: 2024-02-01

99 papers 6,763 citations

117453 34 h-index 71532 76 g-index

102 all docs

102 docs citations

102 times ranked

8761 citing authors

#	Article	IF	CITATIONS
1	Insects Co-opt Host Genes to Overcome Plant Defences Faculty Reviews, 2022, 11, 10.	1.7	O
2	Tracing the origins of recent Queensland fruit fly incursions into South Australia, Tasmania and New Zealand. Biological Invasions, 2021, 23, 1117-1130.	1.2	8
3	Adaptive responses of freeâ€living and symbiotic microalgae to simulated future ocean conditions. Global Change Biology, 2021, 27, 1737-1754.	4.2	15
4	Learnings from over a decade of increasing pesticide resistance in the redlegged earth mite, <i>Halotydeus destructor</i> (Tucker). Pest Management Science, 2021, 77, 3013-3024.	1.7	15
5	Intended consequences statement. Conservation Science and Practice, 2021, 3, e371.	0.9	6
6	Fitness Costs Associated with Pyrethroid Resistance in <i>Halotydeus destructor</i> (Tucker) (Acari:) Tj ETQq0 0 0 1270-1281.	0 rgBT /Ον 0.8	verlock 10 Tf 4
7	Genome-wide patterns of differentiation over space and time in the Queensland fruit fly. Scientific Reports, 2020, 10, 10788.	1.6	16
8	Susceptibility of the bird cherryâ€oat aphid, <scp><i>Rhopalosiphum padi</i></scp> (Hemiptera:) Tj ETQq0 0 0 rg	gBT /Overlo	၁၄ <u>k</u> 10 Tf 50
9	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	6.0	67
10	Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genetics, 2020, 21, 135.	2.7	11
11	Separating two tightly linked species-defining phenotypes in Bactrocera with hybrid recombinant analysis. BMC Genetics, 2020, 21, 132.	2.7	8
12	Heat-evolved microalgal symbionts increase coral bleaching tolerance. Science Advances, 2020, 6, eaba2498.	4.7	129
13	Genetic Biocontrol for Invasive Species. Frontiers in Bioengineering and Biotechnology, 2020, 8, 452.	2.0	78
14	An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Scientific Reports, 2020, 10, 1604.	1.6	13
15	A genome-wide approach for uncovering evolutionary relationships of Australian Bactrocera species complexes (Diptera: Tephritidae). Invertebrate Systematics, 2019, , .	0.5	1
16	Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi. Scientific Reports, 2019, 9, 11898.	1.6	18
17	Additive and epistatic interactions between AKR and AIN loci conferring bluegreen aphid resistance and hypersensitivity in Medicago truncatula. Journal of Experimental Botany, 2019, 70, 4887-4902.	2.4	8
18	Locally Fixed Alleles: A method to localize gene drive to island populations. Scientific Reports, 2019, 9, 15821.	1.6	52

#	Article	IF	CITATIONS
19	Escalating insecticide resistance in Australian grain pests: contributing factors, industry trends and management opportunities. Pest Management Science, 2019, 75, 1494-1506.	1.7	52
20	<i>Zucchini yellow mosaic virus</i> Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. Plant Disease, 2019, 103, 1326-1336.	0.7	5
21	Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science, 2019, 31, 131-138.	2.2	75
22	Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. Plant Disease, 2019, 103, 737-747.	0.7	11
23	A genomic approach to identify and monitor a novel pyrethroid resistance mutation in the redlegged earth mite, Halotydeus destructor. Pesticide Biochemistry and Physiology, 2018, 144, 83-90.	1.6	31
24	Agricultural production: assessment of the potential use ofÂCas9-mediated gene drive systems for agricultural pest control. Journal of Responsible Innovation, 2018, 5, S98-S120.	2.3	64
25	New Isolates of <i>Sweet potato feathery mottle virus</i> and <i>Sweet potato virus C</i> : Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes. Plant Disease, 2018, 102, 1899-1914.	0.7	11
26	First Complete Genome Sequence of Cucurbit aphid-borne yellows virus from Papua New Guinea. Genome Announcements, $2018, 6, .$	0.8	7
27	<i>Sweet potato feathery mottle virus $\langle i \rangle$ and $\langle i \rangle$ Sweet potato virus $C \langle i \rangle$ from East Timorese and Australian Sweetpotato: Biological and Molecular Properties, and Biosecurity Implications. Plant Disease, 2018, 102, 589-599.</i>	0.7	17
28	Discovery and characterisation of field resistance to organophosphorus chemicals in a major mite pest, <i>Halotydeus destructor</i> . Pest Management Science, 2017, 73, 1719-1724.	1.7	28
29	<i>Papaya ringspot virus</i> Populations From East Timorese and Northern Australian Cucurbit Crops: Biological and Molecular Properties, and Absence of Genetic Connectivity. Plant Disease, 2017, 101, 985-993.	0.7	30
30	<i>Zucchini yellow mosaic virus</i> Populations from East Timorese and Northern Australian Cucurbit Crops: Molecular Properties, Genetic Connectivity, and Biosecurity Implications. Plant Disease, 2017, 101, 1236-1245.	0.7	24
31	Analysis of an RNA-seq Strand-Specific Library from an East Timorese Cucumber Sample Reveals a Complete <i>Cucurbit aphid-borne yellows virus </i>	0.8	12
32	Two Complete Genome Sequences of Squash mosaic virus from 20-Year-Old Cucurbit Leaf Samples from Australia. Genome Announcements, 2017, 5, .	0.8	8
33	First Complete Squash leaf curl China virus Genomic Segment DNA-A Sequence from East Timor. Genome Announcements, 2017, 5, .	0.8	15
34	Discovery of metabolic resistance to neonicotinoids in green peach aphids (<i>Myzus persicae</i>) in Australia. Pest Management Science, 2017, 73, 1611-1617.	1.7	44
35	Metagenomic Analysis of Cucumber RNA from East Timor Reveals an <i>Aphid lethal paralysis virus</i> Genome. Genome Announcements, 2017, 5, .	0.8	23
36	Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 2017, 15, 63.	1.7	238

#	Article	lF	Citations
37	First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor. Genome Announcements, $2016, 4, .$	0.8	13
38	Complete Genome Sequences of the Potyvirus Sweet potato virus 2 from East Timor and Australia. Genome Announcements, $2016, 4, .$	0.8	14
39	An insecticide baseline study of Australian broadacre aphids. Crop and Pasture Science, 2016, 67, 236.	0.7	8
40	First Complete Genome Sequence of <i>Bean common mosaic necrosis virus</i> from East Timor. Genome Announcements, 2016, 4, .	0.8	13
41	First Complete Genome Sequence of Pepper vein yellows virus from Australia. Genome Announcements, 2016, 4, .	0.8	18
42	Deep Sequencing Reveals the Complete Genome Sequence of Sweet potato virus G from East Timor. Genome Announcements, 2016, 4, .	0.8	15
43	Complete Genome Sequences of the Carlavirus Sweet potato chlorotic fleck virus from East Timor and Australia. Genome Announcements, 2016, 4, .	0.8	16
44	Editorial overview: Insect genomics â€" shifting the focus of genomics from the lab to the field. Current Opinion in Insect Science, 2016, 13, v-vi.	2.2	0
45	OfftargetFinder: a web tool for species-specific RNAi design. Bioinformatics, 2016, 32, 1232-1234.	1.8	14
46	Armet is an effector protein mediating aphidâ€plant interactions. FASEB Journal, 2015, 29, 2032-2045.	0.2	96
47	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
48	Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, $2015, 16, 1$.	1.2	1,445
49	Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10565-10567.	3.3	183
50	High Levels of Resistance to Carbamate and Pyrethroid Chemicals Widespread in Australian & lt; Regt; Myzus persicae & lt; Remiptera: Aphididae Populations. Journal of Economic Entomology, 2014, 107, 1626-1638.	0.8	43
51	A multiâ€genome analysis approach enables tracking of the invasion of a single <scp>R</scp> ussian wheat aphid (<i><scp>D</scp>iuraphis noxia</i>) clone throughout the <scp>N</scp> ew <scp>W</scp> orld. Molecular Ecology, 2014, 23, 1940-1951.	2.0	29
52	The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: Large repetitive sequences between trnE and trnF in aphids. Gene, 2014, 533, 253-260.	1.0	40
53	Arthropod diversity and the future of allâ€taxa inventories. Insect Conservation and Diversity, 2013, 6, 1-4.	1.4	10
54	The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. Journal of Heredity, 2013, 104, 595-600.	1.0	358

#	Article	IF	Citations
55	Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. Journal of Experimental Botany, 2012, 63, 3913-3922.	2.4	36
56	The role of alkaloids in conferring aphid resistance in yellow lupin (Lupinus luteus L.). Crop and Pasture Science, 2012, 63, 444.	0.7	24
57	A Roadmap for Whitefly Genomics Research: Lessons from Previous Insect Genome Projects. Journal of Integrative Agriculture, 2012, 11, 269-280.	1.7	7
58	Polymorphisms in salivaryâ€gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Science, 2012, 19, 429-440.	1.5	30
59	Russian wheat aphids (<i>Diuraphis noxia</i>) in China: native range expansion or recent introduction?. Molecular Ecology, 2012, 21, 2130-2144.	2.0	34
60	Incursion preparedness: anticipating the arrival of an economically important plant pathogen <i>Xylella fastidiosa</i> Wells (Proteobacteria: Xanthomonadaceae) and the insect vector <i>Homalodisca vitripennis</i> (Germar) (Hemiptera: Cicadellidae) in Australia. Australian Journal of Entomology, 2012, 51, 209-220.	1.1	19
61	Predicted Effector Molecules in the Salivary Secretome of the Pea Aphid (<i>Acyrthosiphon pisum</i>): A Dual Transcriptomic/Proteomic Approach. Journal of Proteome Research, 2011, 10, 1505-1518.	1.8	219
62	Population growth rate and relative virulence of the two South African biotypes of Russian wheat aphid, Diuraphis noxia, and bird cherry-oat aphid, Rhopalosiphum padi, on resistant and non-resistant barley. Entomologia Experimentalis Et Applicata, 2011, 138, 12-20.	0.7	8
63	Russian wheat aphid biotype RWASA2 causes more vascular disruption than RWASA1 on resistant barley lines. South African Journal of Botany, 2011, 77, 755-766.	1.2	3
64	Expansion of Genes Encoding piRNA-Associated Argonaute Proteins in the Pea Aphid: Diversification of Expression Profiles in Different Plastic Morphs. PLoS ONE, 2011, 6, e28051.	1.1	38
65	Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genomics, 2010, 11, 281.	1.2	95
66	Identification of potential early regulators of aphid resistance in <i>Medicago truncatula </i> via transcription factor expression profiling. New Phytologist, 2010, 186, 980-994.	3.5	36
67	A functional DNA methylation system in the pea aphid, <i>Acyrthosiphon pisum</i> Biology, 2010, 19, 215-228.	1.0	123
68	Expansion of the miRNA Pathway in the Hemipteran Insect Acyrthosiphon pisum. Molecular Biology and Evolution, 2010, 27, 979-987.	3.5	56
69	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	2.6	913
70	Global Phylogenetics of <i>Diuraphis noxia</i> (Hemiptera: Aphididae), an Invasive Aphid Species: Evidence for Multiple Invasions Into North America. Journal of Economic Entomology, 2010, 103, 958-965.	0.8	26
71	Two independent resistance genes in the <i>Medicago truncatula </i> cultivar Jester confer resistance to two different aphid species of the genus <i>Acyrthosiphon </i> . Plant Signaling and Behavior, 2009, 4, 328-331.	1.2	25
72	A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. Journal of Experimental Botany, 2009, 60, 4115-4127.	2.4	65

#	Article	IF	CITATIONS
73	Characterization of Pea Aphid Resistance in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2008, 146, 996-1009.	2.3	87
74	Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Australian Journal of Experimental Agriculture, 2008, 48, 1494.	1.0	30
75	Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review. Australian Journal of Experimental Agriculture, 2008, 48, 1523.	1.0	76
76	Host plant resistance in grain crops and prospects for invertebrate pest management in Australia: an overview. Australian Journal of Experimental Agriculture, 2008, 48, 1543.	1.0	15
77	Characterization of resistance to multiple aphid species (Hemiptera: Aphididae) inMedicago truncatula. Bulletin of Entomological Research, 2007, 97, 41-48.	0.5	32
78	Involvement of the Octadecanoid Pathway in Bluegreen Aphid Resistance in Medicago truncatula. Molecular Plant-Microbe Interactions, 2007, 20, 82-93.	1.4	141
79	Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytologist, 2007, 173, 630-640.	3.5	52
80	Aphid resistance to insecticides in grain crops in eastern Australia. Outlooks on Pest Management, 2006, 17, 126-127.	0.1	0
81	Quantitative genetics of preference and performance on chickpeas in the noctuid moth, Helicoverpa armigera. Heredity, 2006, 96, 396-402.	1.2	13
82	Resistance to insect pests: What do legumes have to offer?. Euphytica, 2006, 147, 273-285.	0.6	86
83	Phloem Alkaloid Tolerance Allows Feeding on Resistant Lupinus angustifolius by the Aphid Myzus persicae. Journal of Chemical Ecology, 2006, 32, 1965-1976.	0.9	19
84	Differential inter- and intra-specific defense induction in Lupinus by Myzus persicae feeding. Entomologia Experimentalis Et Applicata, 2005, 117, 155-163.	0.7	16
85	Aphid Resistance in Medicago truncatula Involves Antixenosis and Phloem-Specific, Inducible Antibiosis, and Maps to a Single Locus Flanked by NBS-LRR Resistance Gene Analogs. Plant Physiology, 2005, 137, 1445-1455.	2.3	205
86	Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M'intosh) (Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Molecular Ecology, 2003, 12, 3303-3311.	2.0	54
87	Should we be worried about developing insecticide resistance in aphids?. Outlooks on Pest Management, 2003, 14, 104.	0.2	3
88	Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bulletin of Entomological Research, 2003, 93, 403-411.	0.5	17
89	Evaluating pasture legumes for resistance to aphids. Australian Journal of Experimental Agriculture, 2003, 43, 1345.	1.0	22
90	Is host-specificity of weed biological control agents likely to evolve rapidly following establishment?. Ecology Letters, 2002, 5, 590-596.	3.0	142

#	Article	IF	CITATION
91	Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins. Entomologia Experimentalis Et Applicata, 2001, 98, 259-269.	0.7	31
92	Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomologia Experimentalis Et Applicata, 2001, 100, 21-30.	0.7	52
93	Using superparasitism by a stem borer parasitoid to infer a host refuge. Ecological Entomology, 1999, 24, 7-12.	1.1	24
94	Title is missing!. Experimental and Applied Acarology, 1998, 22, 101-109.	0.7	14
95	Biology of Ageniaspis citricola (Hymenoptera: Encyrtidae), a Parasitoid of the Leafminer Phyllocnistis dtrella (Lepidoptera: Gracillariidae). Annals of the Entomological Society of America, 1998, 91, 654-660.	1.3	23
96	Random Amplified Polymorphic DNA Markers to Monitor Laboratory-Selected, Pesticide-Resistant Trioxys pallidus (Hymenoptera: Aphidiidae) after Release into Three California Walnut Orchards. Environmental Entomology, 1995, 24, 487-496.	0.7	20
97	Monitoring Laboratory and Field Biotypes of the Walnut Aphid Parasite, Trioxys pallidus, in Population Cages Using RAPD-PCR. Biocontrol Science and Technology, 1995, 5, 313-328.	0.5	14
98	Polymorphism in Two Parasitoids Detected Using Random Amplified Polymorphic DNA Polymerase Chain Reaction. Biological Control, 1993, 3, 243-257.	1.4	55
99	Oviposition Behavior of Monochamus carolinensis (Coleoptera: Cerambycidae) Infested with the Pinewood Nematode. Annals of the Entomological Society of America, 1991, 84, 319-323.	1.3	17