Andrew H Proppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029594/publications.pdf

Version: 2024-02-01

		53660]	155451
58	7,290	45		55
papers	citations	h-index		g-index
59	59	59		8092
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	19.8	363
2	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594-598.	13.7	358
3	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
4	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
5	Regulating strain in perovskite thin films through charge-transport layers. Nature Communications, 2020, 11, 1514.	5.8	346
6	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	6.6	326
7	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
8	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Letters, 2016, 16, 4630-4634.	4.5	312
9	Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 2890-2896.	6.6	288
10	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	15.6	252
11	Bifunctional Surface Engineering on SnO ₂ Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2796-2801.	8.8	239
12	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	15.6	233
13	Lattice anchoring stabilizes solution-processed semiconductors. Nature, 2019, 570, 96-101.	13.7	208
14	2D Metal Oxyhalideâ€Derived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	11.1	200
15	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	5.8	181
16	Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications, 2020, 11, 1257.	5.8	180
17	Mixed-quantum-dot solar cells. Nature Communications, 2017, 8, 1325.	5.8	148
18	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148

#	Article	IF	Citations
19	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
20	Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nature Photonics, 2020, 14, 227-233.	15.6	136
21	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters, 2019, 4, 1521-1527.	8.8	130
22	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
23	Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy, 2019, 4, 969-976.	19.8	120
24	Photochemically Cross-Linked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. Journal of the American Chemical Society, 2019, 141, 14180-14189.	6.6	107
25	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	13.3	100
26	Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Advanced Materials, 2021, 33, e2103394.	11.1	99
27	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021, 143, 15606-15615.	6.6	94
28	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472.	5.8	89
29	A Facetâ€Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	11.1	87
30	Pseudohalideâ€Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. Advanced Materials, 2017, 29, 1700749.	11.1	79
31	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	2.1	74
32	Origins of Stokes Shift in PbS Nanocrystals. Nano Letters, 2017, 17, 7191-7195.	4.5	72
33	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	6.6	62
34	An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nature Communications, 2021, 12, 670.	5.8	58
35	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	11.1	57
36	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	4.0	57

#	Article	IF	CITATIONS
37	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 4417-4423.	4.5	57
38	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nature Communications, 2018, 9, 4003.	5.8	56
39	Contactless measurements of photocarrier transport properties in perovskite single crystals. Nature Communications, 2019, 10, 1591.	5.8	55
40	Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. ACS Energy Letters, 2019, 4, 1225-1230.	8.8	54
41	Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 8296-8305.	6.6	53
42	Single-step colloidal quantum dot films for infrared solar harvesting. Applied Physics Letters, 2016, 109, .	1.5	52
43	Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 7052-7059.	4.5	51
44	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivityâ€Controlled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	11.1	49
45	Micron Thick Colloidal Quantum Dot Solids. Nano Letters, 2020, 20, 5284-5291.	4.5	47
46	Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. Nano Letters, 2020, 20, 3694-3702.	4.5	46
47	Energy Level Tuning at the MAPbl ₃ Perovskite/Contact Interface Using Chemical Treatment. ACS Energy Letters, 2019, 4, 2181-2184.	8.8	45
48	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 3895-3901.	2.1	41
49	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2020, 59, 13977-13983.	7.2	36
50	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5115-5119.	2.1	34
51	Examining Structure–Property–Function Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers. ACS Applied Energy Materials, 2018, 1, 5033-5042.	2.5	24
52	Transition Dipole Moments of $n=1,2$, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2020, 11, 716-723.	2.1	24
53	Stable, Bromine-Free, Tetragonal Perovskites with $1.7\mathrm{eV}$ Bandgaps via A-Site Cation Substitution. , 2020, 2, 869-872.		18
54	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	1.5	17

#	Article	IF	CITATIONS
55	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Dimensional Perovskites. Angewandte Chemie, 2020, 132, 14081-14087.	1.6	16
56	High-Throughput Screening of Antisolvents for the Deposition of High-Quality Perovskite Thin Films. ACS Applied Materials & Deposition of High-Quality Perovskite Thin Films.	4.0	11
57	Ligand-induced symmetry breaking, size and morphology in colloidal lead sulfide QDs: from classic to thiourea precursors. , 0, 2, 1.		8
58	Ultrafast photophysics of metal halide perovskite multiple quantum wells: device implications and reconciling band alignment., 2019,,.		O