
Guang-xi Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029569/publications.pdf

Version: 2024-02-01

ΟΠΑΝC-ΧΙ ΖΗΛΙ

#	Article	IF	CITATIONS
1	Advances in autophagy as a target in the treatment of tumours. Journal of Drug Targeting, 2022, 30, 166-187.	4.4	7
2	Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opinion on Drug Delivery, 2022, 19, 221-234.	5.0	11
3	Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation. AAPS PharmSciTech, 2022, 23, 75.	3.3	3
4	An overview of in vitro dissolution testing for film dosage forms. Journal of Drug Delivery Science and Technology, 2022, 71, 103297.	3.0	0
5	Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydrate Polymers, 2021, 254, 117459.	10.2	51
6	Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 1067-1090.	5.0	11
7	A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Development and Industrial Pharmacy, 2021, 47, 839-856.	2.0	15
8	Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Advanced Healthcare Materials, 2021, 10, e2100299.	7.6	20
9	Cancer targeted biomimetic drug delivery system. Journal of Drug Delivery Science and Technology, 2021, 63, 102530.	3.0	10
10	The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. Journal of Controlled Release, 2021, 335, 1-20.	9.9	59
11	Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS Nano, 2021, 15, 12567-12603.	14.6	112
12	RVG-functionalized reduction sensitive micelles for the effective accumulation of doxorubicin in brain. Journal of Nanobiotechnology, 2021, 19, 251.	9.1	20
13	NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity. Biomaterials, 2021, 278, 121135.	11.4	33
14	A molybdenum oxide-based degradable nanosheet for combined chemo-photothermal therapy to improve tumor immunosuppression and suppress distant tumors and lung metastases. Journal of Nanobiotechnology, 2021, 19, 428.	9.1	10
15	Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-β-cyclodextrin: A biosensor evaluation and interaction study. Asian Journal of Pharmaceutical Sciences, 2020, 15, 492-505.	9.1	14
16	Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111284.	5.0	77
17	Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydrate Polymers, 2020, 233, 115837.	10.2	34
18	Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. Journal of Controlled Release, 2020, 323, 333-349.	9.9	49

GUANG-XI ZHAI

#	Article	IF	CITATIONS
19	Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. Journal of Controlled Release, 2019, 309, 106-124.	9.9	94
20	Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. Journal of Colloid and Interface Science, 2019, 553, 567-580.	9.4	31
21	<p>Characterization and bioactivity of self-assembled anti-angiogenic chondroitin sulphate-ES2-AF nanoparticle conjugate</p> . International Journal of Nanomedicine, 2019, Volume 14, 2573-2589.	6.7	10
22	Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Medical Science Monitor, 2019, 25, 9737-9751.	1.1	22
23	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	9.9	59
24	Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Drug Delivery, 2018, 25, 780-796.	5.7	44
25	Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 2018, 291, 37-64.	9.9	134
26	Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. Journal of Controlled Release, 2018, 290, 150-164.	9.9	103
27	The enhanced effect of tetrahydrocurcumin on radiosensitivity of glioma cells. Journal of Pharmacy and Pharmacology, 2018, 70, 749-759.	2.4	12
28	Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Journal of Colloid and Interface Science, 2017, 496, 311-326.	9.4	61
29	Insight into the role of dual-ligand modification in low molecular weight heparin based nanocarrier for targeted delivery of doxorubicin. International Journal of Pharmaceutics, 2017, 523, 427-438.	5.2	25
30	Self-assembled micelles based on Chondroitin sulfate/poly (d , l -lactideco-glycolide) block copolymers for doxorubicin delivery. Journal of Colloid and Interface Science, 2017, 492, 101-111.	9.4	33
31	Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release, 2017, 268, 364-389.	9.9	256
32	Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Materials Science and Engineering C, 2017, 71, 1267-1280.	7.3	161
33	Intelligent polymeric micelles: development and application as drug delivery for docetaxel. Journal of Drug Targeting, 2017, 25, 285-295.	4.4	10
34	Tumor targeting strategies for chitosan-based nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 148, 460-473.	5.0	63
35	Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid. Colloids and Surfaces B: Biointerfaces, 2016, 146, 235-244.	5.0	40
36	pH-responsive copolymers based on pluronic P123-poly(β-amino ester): Synthesis, characterization and application of copolymer micelles. Colloids and Surfaces B: Biointerfaces, 2016, 142, 114-122.	5.0	35

GUANG-XI ZHAI

#	Article	IF	CITATIONS
37	Biomedical applications of the graphene-based materials. Materials Science and Engineering C, 2016, 61, 953-964.	7.3	162
38	Advances in Hyaluronic Acid-Based Drug Delivery Systems. Current Drug Targets, 2016, 17, 720-730.	2.1	48
39	Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydrate Polymers, 2015, 133, 391-399.	10.2	97
40	The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discovery Today, 2015, 20, 1004-1011.	6.4	130
41	The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. Journal of Colloid and Interface Science, 2015, 460, 87-96.	9.4	40
42	Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules, 2015, 16, 423-436.	5.4	93
43	The synthesis, self-assembling, and biocompatibility of a novel O-carboxymethyl chitosan cholate decorated with glycyrrhetinic acid. Carbohydrate Polymers, 2014, 111, 753-761.	10.2	53
44	Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2014, 123, 778-786.	5.0	72
45	Current research on hyaluronic acid-drug bioconjugates. European Journal of Medicinal Chemistry, 2014, 86, 310-317.	5.5	37
46	Polymer-drug conjugates: recent progress on administration routes. Expert Opinion on Drug Delivery, 2014, 11, 1075-1086.	5.0	50
47	Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine, 2014, 9, 723-740.	3.3	29
48	Progress in Intra-Articular Drug Delivery Systems for Osteoarthritis. Current Drug Targets, 2014, 15, 888-900.	2.1	16
49	Polymer–drug conjugates: present state of play and future perspectives. Drug Discovery Today, 2013, 18, 1316-1322.	6.4	81