Mariafrancesca Scalise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029460/publications.pdf

Version: 2024-02-01

77 papers

2,865 citations

201385 27 h-index 51 g-index

81 all docs

81 docs citations

81 times ranked 3638 citing authors

#	Article	IF	CITATIONS
1	Cysteine 467 of the ASCT2 Amino Acid Transporter Is a Molecular Determinant of the Antiport Mechanism. International Journal of Molecular Sciences, 2022, 23, 1127.	1.8	7
2	OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. International Journal of Molecular Sciences, 2022, 23, 914.	1.8	8
3	Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 3823.	1.8	5
4	The Nutraceutical Alliin From Garlic Is a Novel Substrate of the Essential Amino Acid Transporter LAT1 (SLC7A5). Frontiers in Pharmacology, 2022, 13, 877576.	1.6	3
5	Extracellular Vesicles and Cell Pathways Involved in Cancer Chemoresistance. Life, 2022, 12, 618.	1.1	3
6	Bacterial over-expression of functionally active human CT2 (SLC22A16) carnitine transporter. Molecular Biology Reports, 2022, 49, 8185-8193.	1.0	4
7	Sialic Acid Derivatives Inhibit SiaT Transporters and Delay Bacterial Growth. ACS Chemical Biology, 2022, 17, 1890-1900.	1.6	7
8	Inhibition of the carnitine acylcarnitine carrier by carbon monoxide reveals a novel mechanism of action with non-metal-containing proteins. Free Radical Biology and Medicine, 2022, 188, 395-403.	1.3	3
9	Cholesterol stimulates the cellular uptake of L-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). Journal of Biological Chemistry, 2021, 296, 100204.	1.6	8
10	ASCT1 and ASCT2: Brother and Sister?. SLAS Discovery, 2021, 26, 1148-1163.	1.4	16
11	Editorial: Transport of Nutrients, Metabolites and Ions Linked to Bioenergetics: Relevance to Human Pathology. Frontiers in Molecular Biosciences, 2021, 8, 770797.	1.6	O
12	Chemical Approaches for Studying the Biology and Pharmacology of Membrane Transporters: The Histidine/Large Amino Acid Transporter SLC7A5 as a Benchmark. Molecules, 2021, 26, 6562.	1.7	5
13	The involvement of sodium in the function of the human amino acid transporter ASCT2. FEBS Letters, 2021, 595, 3030-3041.	1.3	11
14	The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury. Frontiers in Physiology, 2020, 11, 794.	1.3	63
15	The Human SLC1A5 Neutral Amino Acid Transporter Catalyzes a pH-Dependent Glutamate/Glutamine Antiport, as Well. Frontiers in Cell and Developmental Biology, 2020, 8, 603.	1.8	18
16	ATP modulates SLC7A5 (LAT1) synergistically with cholesterol. Scientific Reports, 2020, 10, 16738.	1.6	21
17	Carnitine Traffic in Cells. Link With Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 583850.	1.8	31
18	Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells, 2020, 9, 2028.	1.8	25

#	Article	IF	Citations
19	Human papillomavirus type 38 alters wild-type p53 activity to promote cell proliferation via the downregulation of integrin alpha 1 expression. PLoS Pathogens, 2020, 16, e1008792.	2.1	9
20	Repurposing Nimesulide, a Potent Inhibitor of the BOAT1 Subunit of the SARS-CoV-2 Receptor, as a Therapeutic Adjuvant of COVID-19. SLAS Discovery, 2020, 25, 1171-1173.	1.4	21
21	Glutamine transporters as pharmacological targets: From function to drug design. Asian Journal of Pharmaceutical Sciences, 2020, 15, 207-219.	4.3	26
22	Amino Acids Transport and Metabolism 2.0. International Journal of Molecular Sciences, 2020, 21, 1212.	1.8	4
23	Effect of Cholesterol on the Organic Cation Transporter OCTN1 (SLC22A4). International Journal of Molecular Sciences, 2020, 21, 1091.	1.8	6
24	Chemical Targeting of Membrane Transporters: Insights into Structure/Function Relationships. ACS Omega, 2020, 5, 2069-2080.	1.6	13
25	Title is missing!. , 2020, 16, e1008792.		O
26	Title is missing!. , 2020, 16, e1008792.		0
27	Title is missing!. , 2020, 16, e1008792.		O
28	Title is missing!. , 2020, 16, e1008792.		0
29	Insights into the transport side of the human SLC38A9 transceptor. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1558-1567.	1.4	24
30	Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS Discovery, 2019, 24, 867-881.	1.4	10
31	Interaction of Cholesterol With the Human SLC1A5 (ASCT2): Insights Into Structure/Function Relationships. Frontiers in Molecular Biosciences, 2019, 6, 110.	1.6	15
32	Membrane Proteins: New Approaches to Probes, Technologies, and Drug Design. SLAS Discovery, 2019, 24, 865-866.	1.4	1
33	Regulatory Aspects of the Vacuolar CAT2 Arginine Transporter of S. lycopersicum: Role of Osmotic Pressure and Cations. International Journal of Molecular Sciences, 2019, 20, 906.	1.8	7
34	Membrane Proteins: New Approaches to Probes, Technologies, and Drug Design, Part II. SLAS Discovery, 2019, 24, 941-942.	1.4	1
35	OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS Discovery, 2019, 24, 89-110.	1.4	56
36	Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. International Journal of Molecular Sciences, 2019, 20, 27.	1.8	38

#	Article	IF	Citations
37	Exosomes in inflammation and role as biomarkers. Clinica Chimica Acta, 2019, 488, 165-171.	0.5	162
38	Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter. Scientific Reports, 2018, 8, 3758.	1.6	23
39	The human SLC1A5 amino acid transporter: structure/function relationships, regulatory aspects and involvement in energy metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e32.	0.5	О
40	Olive leaf extract counteracts cell proliferation and cyst growth in an <i>in vitro</i> model of autosomal dominant polycystic kidney disease. Food and Function, 2018, 9, 5925-5935.	2.1	4
41	The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Frontiers in Cell and Developmental Biology, 2018, 6, 96.	1.8	176
42	The Sodium Sialic Acid Symporter From Staphylococcus aureus Has Altered Substrate Specificity. Frontiers in Chemistry, 2018, 6, 233.	1.8	24
43	Cys Site-Directed Mutagenesis of the Human SLC1A5 (ASCT2) Transporter: Structure/Function Relationships and Crucial Role of Cys467 for Redox Sensing and Glutamine Transport. International Journal of Molecular Sciences, 2018, 19, 648.	1.8	20
44	The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Frontiers in Chemistry, 2018, 6, 243.	1.8	197
45	Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nature Communications, 2018, 9, 1753.	5.8	62
46	Novel insights into the transport mechanism of the human amino acid transporter LAT1 (SLC7A5). Probing critical residues for substrate translocation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 727-736.	1.1	64
47	Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs. Biochemical Pharmacology, 2017, 143, 39-52.	2.0	72
48	Bacterial production and reconstitution in proteoliposomes of Solanum lycopersicum CAT2: a transporter of basic amino acids and organic cations. Plant Molecular Biology, 2017, 94, 657-667.	2.0	4
49	Clutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth. Frontiers in Oncology, 2017, 7, 306.	1.3	140
50	Studying Interactions of Drugs with Cell Membrane Nutrient Transporters: New Frontiers of Proteoliposome Nanotechnology. Current Pharmaceutical Design, 2017, 23, 3871-3883.	0.9	17
51	Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell, 2016, 167, 1481-1494.e18.	13.5	265
52	Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 653-660.	1.4	14
53	Glutamine transport. From energy supply to sensing and beyond. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1147-1157.	0.5	54
54	Functional and Molecular Effects of Mercury Compounds on the Human OCTN1 Cation Transporter: C50 and C136 Are the Targets for Potent Inhibition. Toxicological Sciences, 2015, 144, 105-113.	1.4	21

#	Article	IF	Citations
55	LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. International Journal of Biochemistry and Cell Biology, 2015, 67, 25-33.	1.2	114
56	Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function. International Immunopharmacology, 2015, 29, 21-26.	1.7	16
57	N-linked Glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1636-1645.	1.9	58
58	Mitochondrial Carnitine/Acylcarnitine Transporter, a Novel Target of Mercury Toxicity. Chemical Research in Toxicology, 2015, 28, 1015-1022.	1.7	25
59	Cysteine is not a substrate but a specific modulator of human ASCT2 (SLC1A5) transporter. FEBS Letters, 2015, 589, 3617-3623.	1.3	40
60	Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Frontiers in Chemistry, 2014, 2, 61.	1.8	193
61	AMINO ACID TRANSPORTERS IN DRUG DISCOVERY. Current Research in Drug Discovery, 2014, 1, 1-16.	0.4	О
62	Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids, 2014, 46, 2463-2475.	1.2	57
63	Nimesulide binding site in the BOAT1 (SLC6A19) amino acid transporter. Mechanism of inhibition revealed by proteoliposome transport assay and molecular modelling. Biochemical Pharmacology, 2014, 89, 422-430.	2.0	27
64	Strategies of Bacterial Over Expression of Membrane Transporters Relevant in Human Health: The Successful Case of the Three Members of OCTN Subfamily. Molecular Biotechnology, 2013, 54, 724-736.	1.3	24
65	OCTN Cation Transporters in Health and Disease. Journal of Biomolecular Screening, 2013, 18, 851-867.	2.6	86
66	Cloning, Large Scale Over-Expression in E. coli and Purification of the Components of the Human LAT 1 (SLC7A5) Amino Acid Transporter. Protein Journal, 2013, 32, 442-448.	0.7	24
67	Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris â€" functional and kinetic asymmetry revealed in proteoliposomes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2238-2246.	1.4	58
68	Proteoliposomes as Tool for Assaying Membrane Transporter Functions and Interactions with Xenobiotics. Pharmaceutics, 2013, 5, 472-497.	2.0	59
69	The human OCTN1 (SLC22A4) reconstituted in liposomes catalyzes acetylcholine transport which is defective in the mutant L503F associated to the Crohn's disease. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 559-565.	1.4	51
70	Over-expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub-family: The mouse carnitine transporter OCTN3. Biochemical and Biophysical Research Communications, 2012, 422, 59-63.	1.0	18
71	Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system. Life Sciences, 2012, 91, 1013-1016.	2.0	30
72	Human OCTN2 (SLC22A5) is downâ€regulated in virus―and nonvirusâ€mediated cancer. Cell Biochemistry and Function, 2012, 30, 419-425.	1.4	27

#	Article	IF	CITATIONS
73	Over-Expression in E. coli and Purification of the Human OCTN2 Transport Protein. Molecular Biotechnology, 2012, 50, 1-7.	1.3	20
74	Reconstitution in liposomes of the functionally active human OCTN1 (SLC22A4) transporter overexpressed in <i>Escherichia coli</i> . Biochemical Journal, 2011, 439, 227-233.	1.7	36
75	\hat{l}^{Ω} B Kinase \hat{l}^2 Promotes Cell Survival by Antagonizing p53 Functions through \hat{l}^{Ω} Np73 \hat{l}^{Ω} Phosphorylation and Stabilization. Molecular and Cellular Biology, 2011, 31, 2210-2226.	1.1	29
76	E6 and E7 from Human Papillomavirus Type 16 Cooperate To Target the PDZ Protein Na/H Exchange Regulatory Factor 1. Journal of Virology, 2011, 85, 8208-8216.	1.5	55
77	Inactivation by omeprazole of the carnitine transporter (OCTN2) reconstituted in liposomes. Chemico-Biological Interactions, 2009, 179, 394-401.	1.7	24