
Judith L Yanowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109508119.	7.1	6
2	Modeling primary ovarian insufficiency-associated loci in C. elegans identifies novel pathogenic allele of MSH5. Journal of Assisted Reproduction and Genetics, 2022, 39, 1255-1260.	2.5	5
3	idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R. PLoS ONE, 2022, 17, e0266929.	2.5	6
4	Cytogenetic signatures of recurrent pregnancy losses. Prenatal Diagnosis, 2021, 41, 70-78.	2.3	7
5	Molecular basis of reproductive senescence: insights from model organisms. Journal of Assisted Reproduction and Genetics, 2021, 38, 17-32.	2.5	9
6	Variants in GCNA, X-linked germ-cell genome integrity gene, identified in men with primary spermatogenic failure. Human Genetics, 2021, 140, 1169-1182.	3.8	27
7	Aging Negatively Impacts DNA Repair and Bivalent Formation in the C. elegans Germ Line. Frontiers in Cell and Developmental Biology, 2021, 9, 695333.	3.7	11
8	GCNA Preserves Genome Integrity and Fertility Across Species. Developmental Cell, 2020, 52, 38-52.e10.	7.0	53
9	Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nature Communications, 2020, 11, 4869.	12.8	16
10	The molecular tug of war between immunity and fertility: Emergence of conserved signaling pathways and regulatory mechanisms. BioEssays, 2020, 42, 2000103.	2.5	11
11	The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nature Communications, 2019, 10, 3042.	12.8	26
12	ATM and ATR Influence Meiotic Crossover Formation Through Antagonistic and Overlapping Functions in <i>Caenorhabditis elegans</i> . Genetics, 2019, 212, 431-443.	2.9	16
13	A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genetics, 2019, 15, e1007992.	3.5	19
14	A LONGEVITY PROMOTING FACTOR THAT SUPPRESSES IMMUNITY AND HEALTHSPAN. Innovation in Aging, 2019, 3, S769-S769.	0.1	0
15	Meiotic Double-Strand Break Proteins Influence Repair Pathway Utilization. Genetics, 2018, 210, 843-856.	2.9	34
16	Meiosis. WormBook, 2017, 2017, 1-43.	5.3	92
17	Control of meiotic pairing and recombination by chromosomally tethered 26 <i>S</i> proteasome. Science, 2017, 355, 408-411.	12.6	80
18	X Chromosome Crossover Formation and Genome Stability in <i>Caenorhabditis elegans</i> Are Independently Regulated by <i>xnd-1</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3913-3925.	1.8	15

JUDITH L YANOWITZ

#	Article	IF	CITATIONS
19	A twist of fate: How a meiotic protein is providing new perspectives on germ cell development. Worm, 2016, 5, e1175259.	1.0	0
20	The p53-like Protein CEP-1 Is Required for Meiotic Fidelity in C.Âelegans. Current Biology, 2016, 26, 1148-1158.	3.9	30
21	Unearthing aneuploidy: investigating double-strand breaks in oocytes of Caenorhabditis elegans. Fertility and Sterility, 2016, 106, e187-e188.	1.0	0
22	A Surveillance System Ensures Crossover Formation in C.Âelegans. Current Biology, 2016, 26, 2873-2884.	3.9	56
23	Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 133-145.	2.9	25
24	DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. PLoS Genetics, 2016, 12, e1005788.	3.5	49
25	REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in <i>Caenorhabditis elegans</i> . Genes and Development, 2015, 29, 1969-1979.	5.9	19
26	A novel germ cell determinant reveals parallel pathways for germ line development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2015, 142, 3571-82.	2.5	22
27	Methodological considerations for mutagen exposure in C. elegans. Methods, 2014, 68, 441-449.	3.8	7
28	Expanding the C. elegans toolbox into a toolshed. Methods, 2014, 68, 379-380.	3.8	1
29	Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods, 2014, 68, 450-457.	3.8	54
30	Crossover Distribution and Frequency Are Regulated by <i>him-5</i> in <i>Caenorhabditis elegans</i> . Genetics, 2012, 190, 1251-1266.	2.9	60
31	An extracellular matrix protein prevents cytokinesis failure and aneuploidy in the <i>C. elegans</i> germline. Cell Cycle, 2011, 10, 1916-1920.	2.6	5
32	The Translation Initiation Factor elF4E Regulates the Sex-Specific Expression of the Master Switch Gene Sxl in Drosophila melanogaster. PLoS Genetics, 2011, 7, e1002185.	3.5	24
33	Meiosis: making a break for it. Current Opinion in Cell Biology, 2010, 22, 744-751.	5.4	48
34	xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature, 2010, 467, 839-843.	27.8	86
35	Domain-Specific Regulation of Recombination in <i>Caenorhabditis elegans</i> in Response to Temperature, Age and Sex. Genetics, 2008, 180, 715-726.	2.9	39
36	Genome Integrity Is Regulated by the <i>Caenorhabditis elegans</i> Rad51D Homolog <i>rfs-1</i> . Genetics, 2008, 179, 249-262.	2.9	38

JUDITH L YANOWITZ

#	Article	IF	CITATIONS
37	Replication blocking lesions present a unique substrate for homologous recombination. EMBO Journal, 2007, 26, 3384-3396.	7.8	77
38	If I only had a brain: exploring mouse brain images in the Allen Brain Atlas. Biology of the Cell, 2007, 99, 403-409.	2.0	9
39	An antagonistic role for the C. elegans Schnurri homolog SMA-9 in modulating TGFÎ ² signaling during mesodermal patterning. Development (Cambridge), 2006, 133, 2887-2896.	2.5	57
40	The Drosophila GAGA Factor Is Required for Dosage Compensation in Males and for the Formation of the Male-Specific-Lethal Complex Chromatin Entry Site at 12DE. Genetics, 2004, 166, 279-289.	2.9	29
41	An N-Terminal Truncation Uncouples the Sex-Transforming and Dosage Compensation Functions of <i>Sex-lethal</i> . Molecular and Cellular Biology, 1999, 19, 3018-3028.	2.3	45