Carin Wittnich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029332/publications.pdf

Version: 2024-02-01

840776 752698 25 402 11 20 citations h-index g-index papers 25 25 25 542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cardiac Structures in Marine Animals Provide Insight on Potential Directions for Interventions for Pediatric Congenital Heart Defects. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1-H7.	3.2	1
2	What factors contribute to the elevation of serum free fatty acid levels in newborns in the cardiac surgical setting?. Canadian Journal of Physiology and Pharmacology, 2017, 95, 873-877.	1.4	2
3	Does young age really put the heart at risk?. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1177-1182.	1.4	O
4	The Role of $17\hat{l}^2$ -Estradiol in Myocardial Hypertrophy in Females in the Presence and Absence of Hypertension. Cardiovascular Drugs and Therapy, 2015, 29, 347-353.	2.6	4
5	Invited Commentary. Annals of Thoracic Surgery, 2015, 99, 2178.	1.3	O
6	Sex differences in myocardial metabolism and cardiac function: an emerging concept. Pflugers Archiv European Journal of Physiology, 2013, 465, 719-729.	2.8	42
7	Sex Differences in Newborn Myocardial Metabolism and Response to Ischemia. Pediatric Research, 2011, 70, 148-152.	2.3	10
8	Ventricle-Specific Metabolic Differences in the Newborn Piglet Myocardium In Vivo and During Arrested Global Ischemia. Pediatric Research, 2008, 63, 15-19.	2.3	12
9	Newborn hearts are at greater †metabolic risk†during global ischemia †advantages of continuous coronary washout. Canadian Journal of Cardiology, 2007, 23, 195-200.	1.7	19
10	Age-related differences in myocardial hydrogen ion buffering during ischemia. Molecular and Cellular Biochemistry, 2006, 285, 61-67.	3.1	7
11	Are there ventricle-specific postnatal maturational differences in myocardial \hat{l}^2 -adrenoceptors?. Canadian Journal of Physiology and Pharmacology, 2006, 84, 859-865.	1.4	5
12	Does hyperoxia affect glucose regulation and transport in the newborn?. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1730-1735.	0.8	27
13	Preischemic administration of ribose to delay the onset of irreversible ischemic injury and improve function: studies in normal and hypertrophied hearts. Canadian Journal of Physiology and Pharmacology, 2003, 81, 40-47.	1.4	8
14	A Long-Term Stable Normothermic Cardiopulmonary Bypass Model in Neonatal Swine. Journal of Surgical Research, 2001, 101, 176-182.	1.6	7
15	Sex Hormones and the Selective Estrogen Receptor Modulator Tamoxifen Modulate Weekly Body Weights and Food Intakes in Adolescent and Adult Rats. Journal of Nutrition, 2001, 131, 2351-2357.	2.9	81
16	Postischemic functional recovery in immature hearts is influenced by performance index and assessment technique. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2446-H2455.	3.2	2
17	Is hyperglycemia seen in children during cardiopulmonary bypass a result of hyperoxia?. Journal of Thoracic and Cardiovascular Surgery, 2001, 122, 753-758.	0.8	13
18	Does the degree of cyanosis affect myocardial adenosine triphosphate levels and function in children undergoing surgical procedures for congenital heart disease?. Journal of Thoracic and Cardiovascular Surgery, 2000, 119, 515-524.	0.8	42

#	Article	IF	CITATION
19	Metabolic and Functional Response of Neonatal Pig Hearts to the Development of Ischemic Contracture: Is Recovery Possible?. Pediatric Research, 2000, 48, 191-199.	2.3	11
20	Gender-Differences in Myocardial Adaptation to Afterload in Normotensive and Hypertensive Rats. Hypertension, 2000, 36, 774-779.	2.7	54
21	Effects of hyperoxia on neonatal myocardial energy status and response to global ischemia. Annals of Thoracic Surgery, 2000, 70, 2125-2131.	1.3	18
22	Does the Severity of Acute Hypoxia Influence Neonatal Myocardial Metabolism and Sensitivity to Ischemia?. Journal of Molecular and Cellular Cardiology, 1994, 26, 675-682.	1.9	9
23	The Effect of Varying Arterial Oxygen Tension on Neonatal Acid-Base Balance. Pediatric Research, 1992, 31, 112-116.	2.3	5
24	Multiple In Vivo Full-Thickness Myocardial Biopsies by Freeze-Clamping. Journal of Investigative Surgery, 1992, 5, 143-147.	1.3	10
25	Not all neonatal hearts are equally protected from ischemic damage during hypothermia. Annals of Thoracic Surgery, 1991, 52, 1000-1004.	1.3	13