
Pedro P Madeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the aggregation of bovine serum albumin. Journal of Molecular Liquids, 2022, 349, 118183.	2.3	6
2	Effects of different solutes on the physical chemical properties of aqueous solutions via rearrangement of hydrogen bonds in water. Journal of Molecular Liquids, 2021, 335, 116288.	2.3	8
3	Hydrogen Bond Arrangement Is Shown to Differ in Coexisting Phases of Aqueous Two-Phase Systems. Biomolecules, 2021, 11, 1787.	1.8	4
4	Distinct roles of salt cations and anions upon the salting-out of electro-positive albumin. Journal of Molecular Liquids, 2020, 301, 112409.	2.3	7
5	The role of carboxyl groups upon the precipitation of albumin at low pH. Journal of Molecular Liquids, 2020, 319, 114206.	2.3	4
6	Linear Relationships between Partition Coefficients of Different Organic Compounds and Proteins in Aqueous Two-Phase Systems of Various Polymer and Ionic Compositions. Polymers, 2020, 12, 1452.	2.0	2
7	Solvatochromism as a new tool to distinguish structurally similar compounds. Journal of Molecular Liquids, 2019, 274, 740-745.	2.3	8
8	Mechanisms ruling the partition of solutes in ionic-liquid-based aqueous biphasic systems – the multiple effects of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8411-8422.	1.3	13
9	Effects of low urea concentrations on protein-water interactions. Journal of Biomolecular Structure and Dynamics, 2017, 35, 207-218.	2.0	8
10	Alternative probe for the determination of the hydrogen-bond acidity of ionic liquids and their aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 11011-11016.	1.3	27
11	Why physicochemical properties of aqueous solutions of various compounds are linearly interrelated. Journal of Molecular Liquids, 2016, 221, 116-123.	2.3	18
12	Role of solvent properties of aqueous media in macromolecular crowding effects. Journal of Biomolecular Structure and Dynamics, 2016, 34, 92-103.	2.0	56
13	Interrelationship between partition behavior of organic compounds and proteins in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems. Journal of Chromatography A, 2016, 1443, 21-25.	1.8	8
14	Effect of sodium chloride on solute–solvent interactions in aqueous polyethylene glycol–sodium sulfate two-phase systems. Journal of Chromatography A, 2015, 1425, 51-61.	1.8	11
15	Effect of ionic composition on the partitioning of organic compounds in octanol–buffer systems. RSC Advances, 2015, 5, 20574-20582.	1.7	10
16	Analyzing the effects of protecting osmolytes on solute–water interactions by solvatochromic comparison method: I. Small organic compounds. RSC Advances, 2015, 5, 59812-59822.	1.7	26
17	Analyzing the effects of protecting osmolytes on solute–water interactions by solvatochromic comparison method: II. Globular proteins. RSC Advances, 2015, 5, 59780-59791.	1.7	22
18	Cooperativity between various types of polar solute–solvent interactions in aqueous media. Journal of Chromatography A, 2015, 1408, 108-117.	1.8	16

Pedro P Madeira

#	Article	IF	CITATIONS
19	Responses of proteins to different ionic environment are linearly interrelated. Journal of Chromatography A, 2015, 1387, 32-41.	1.8	18
20	Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute–solvent interactions. Journal of Chromatography A, 2015, 1415, 1-10.	1.8	37
21	Amino acid/water interactions study: a new amino acid scale. Journal of Biomolecular Structure and Dynamics, 2014, 32, 959-968.	2.0	42
22	Structural features important for differences in protein partitioning in aqueous dextran–polyethylene glycol two-phase systems of different ionic compositions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 694-704.	1.1	21
23	Modeling the partitioning of amino acids in aqueous two phase systems. Journal of Chromatography A, 2014, 1329, 52-60.	1.8	17
24	Solvent interaction analysis of intrinsically disordered proteins in aqueous two-phase systems. Molecular BioSystems, 2013, 9, 3068.	2.9	14
25	Analysis of amino acid–water interactions by partitioning in aqueous two-phase systems. l—Amino acids with non-polar side-chains. Journal of Chromatography A, 2013, 1274, 82-86.	1.8	28
26	Study of organic compounds–water interactions by partition in aqueous two-phase systems. Journal of Chromatography A, 2013, 1322, 97-104.	1.8	18
27	Effect of salt additives on protein partition in polyethylene glycol–sodium sulfate aqueous two-phase systems. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2859-2866.	1.1	34
28	Solvatochromic relationship: Prediction of distribution of ionic solutes in aqueous two-phase systems. Journal of Chromatography A, 2013, 1271, 10-16.	1.8	35
29	Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. Journal of Chromatography A, 2012, 1229, 38-47.	1.8	42
30	Solvent properties governing protein partitioning in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 2011, 1218, 1379-1384.	1.8	53
31	Solvent Properties Governing Solute Partitioning in Polymer/Polymer Aqueous Two-Phase Systems: Nonionic Compounds. Journal of Physical Chemistry B, 2010, 114, 457-462.	1.2	48
32	ΔG(CH2) as solvent descriptor in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 2008, 1185, 85-92.	1.8	24
33	"On the Collander equation†Protein partitioning in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 2008, 1190, 39-43.	1.8	34
34	Correlations between distribution coefficients of various biomolecules in different polymer/polymer aqueous two-phase systems. Fluid Phase Equilibria, 2008, 267, 150-157.	1.4	41
35	Gibbs Free Energy of Transfer of a Methylene Group in Buffer + Ionic Liquid Biphasic Systems. Industrial & Engineering Chemistry Research, 2008, 47, 5165-5168.	1.8	11
36	Δ <i>G</i> (CH ₂) in PEGâ^'Salt and Uconâ^'Salt Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, 2008, 53, 1622-1625.	1.0	32

PEDRO P MADEIRA

#	Article	IF	CITATIONS
37	Physicochemical Characterization of the PEC8000-Na2SO4 Aqueous Two-Phase System. Industrial & Engineering Chemistry Research, 2007, 46, 8199-8204.	1.8	45
38	Prediction of protein partition in polymer/salt aqueous two-phase systems using the modified Wilson model. Biochemical Engineering Journal, 2005, 24, 147-155.	1.8	23
39	Representation of liquid–liquid equilibria for polymer–salt aqueous two-phase systems. Chemical Engineering Science, 2004, 59, 1153-1159.	1.9	16
40	A new modified Wilson equation for the calculation of vapor–liquid equilibrium of aqueous polymer solutions. Fluid Phase Equilibria, 2003, 213, 53-63.	1.4	32