Hongyi Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902826/publications.pdf

Version: 2024-02-01

		759233	839539	
18	488	12	18	
papers	citations	h-index	g-index	
1.0		1.0	000	
18	18	18	283	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers, 2022, 14, 1128.	4.5	6
2	Post-functionalization of narrowly dispersed PE waxes generated using tuned N,N,N′-cobalt ethylene polymerization catalysts substituted with ortho-cycloalkyl groups. Polymer, 2021, 213, 123294.	3.8	12
3	Norbornadiene homopolymerization and norbornene/norbornadiene/1-octene terpolymerization by <i>ansa</i> -fluorenylamidotitanium-based catalysts. Polymer Chemistry, 2020, 11, 6803-6810.	3.9	7
4	Achieving strictly linear polyethylenes by the <i>NNN</i> â€Fe precatalysts finely tuned with different sizes of <i>ortho</i> â€cycloalkyl substituents. Applied Organometallic Chemistry, 2020, 34, e5937.	3.5	15
5	Adjusting Ortho-Cycloalkyl Ring Size in a Cycloheptyl-Fused N,N,N-Iron Catalyst as Means to Control Catalytic Activity and Polyethylene Properties. Catalysts, 2020, 10, 1002.	3.5	16
6	Bis-cycloheptyl-fused bis(imino)pyridine-cobalt catalysts for PE wax formation: positive effects of fluoride substitution on catalytic performance and thermal stability. Dalton Transactions, 2020, 49, 9425-9437.	3.3	29
7	High molecular weight polyethylenes of narrow dispersity promoted using bis(arylimino)cyclohepta[<i>b</i> pyridine-cobalt catalysts <i>ortho</i> substituted with benzhydryl & cycloalkyl groups. Dalton Transactions, 2020, 49, 4774-4784.	3.3	22
8	Synthesis of characteristic polyisoprenes using rationally designed iminopyridyl metal (Fe and Co) precatalysts: investigation of co-catalysts and steric influence on their catalytic activity. New Journal of Chemistry, 2020, 44, 8076-8084.	2.8	17
9	Recent developments in vanadium-catalyzed olefin coordination polymerization. Coordination Chemistry Reviews, 2020, 416, 213332.	18.8	54
10	Methyleneâ€bridged bis(8â€arylimino)â€5,6,7â€trihydroâ€quinolylinickel precatalysts for ethylene polymerization. Journal of Polymer Science, 2020, 58, 1675-1686.	3.8	8
11	Coâ€catalyst effects on the thermal stability/activity of <i>N,N,N,N⟨/i⟩â€Co ethylene polymerization Catalysts Bearing Fluoroâ€Substituted Nâ€2,6â€dibenzhydrylphenyl groups. Applied Organometallic Chemistry, 2019, 33, e5134.</i>	3.5	24
12	1,5-Naphthyl-linked bis(imino)pyridines as binucleating scaffolds for dicobalt ethylene oligo-/polymerization catalysts: exploring temperature and steric effects. Dalton Transactions, 2019, 48, 8264-8278.	3.3	19
13	Narrow dispersed linear polyethylene using cobalt catalysts bearing cycloheptyl-fused bis(imino)pyridines; probing the effects of ortho-benzhydryl substitution. European Polymer Journal, 2019, 110, 240-251.	5.4	32
14	Strictly linear polyethylene using Co-catalysts chelated by fused bis(arylimino)pyridines: Probing ortho-cycloalkyl ring-size effects on molecular weight. Polymer, 2018, 149, 45-54.	3.8	47
15	Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts. Coordination Chemistry Reviews, 2018, 372, 101-116.	18.8	93
16	<i>ortho</i> -Cycloalkyl substituted <i>N</i> , <i>N</i> ′-diaryliminoacenaphthene-Ni(<scp>ii</scp>) catalysts for polyethylene elastomers; exploring ring size and temperature effects. Dalton Transactions, 2017, 46, 15684-15697.	3.3	32
17	Thermoâ€stable 2â€(arylimino)benzylideneâ€9â€aryliminoâ€5,6,7,8â€ŧetrahydro cyclohepta <i>[b]</i> pyridyliro precatalysts toward ethylene polymerization and highly linear polyethylenes. Journal of Polymer Science Part A, 2017, 55, 830-842.	on(II) 2.3	44
18	N-(2,2-Dimethyl-1-(quinolin-2-yl)propylidene) arylaminonickel Complexes and Their Ethylene Oligomerization. Molecules, 2017, 22, 630.	3.8	11