Aldo Frezzotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9028229/publications.pdf Version: 2024-02-01

ALDO EPEZZOTTI

#	Article	IF	CITATIONS
1	Time-Resolved Imaging of Femtosecond Laser-Induced Plasma Expansion in a Nitrogen Microjet. Applied Sciences (Switzerland), 2022, 12, 1978.	1.3	Ο
2	Twenty-six moment equations for the Enskog–Vlasov equation. Journal of Fluid Mechanics, 2022, 940, .	1.4	14
3	Integrated Filter for the Separation between XUV and IR Beam in High-order Harmonic Generation in a chip. , 2021, , .		0
4	Numerical Investigation of Reversed Gas-Feed Configurations for Hall Thrusters. Journal of Propulsion and Power, 2021, 37, 919-927.	1.3	6
5	Simulation of shock induced vapor condensation flows in the Lennard-Jones fluid by microscopic and continuum models. Physics of Fluids, 2020, 32, .	1.6	7
6	High-order harmonic generation in a microfluidic glass device. JPhys Photonics, 2020, 2, 024005.	2.2	20
7	Femtosecond Laser-Micromachining of Glass Micro-Chip for High Order Harmonic Generation in Gases. Micromachines, 2020, 11, 165.	1.4	8
8	A kinetic model for gas adsorption-desorption at solid surfaces under non-equilibrium conditions. Vacuum, 2020, 174, 109166.	1.6	13
9	Aerothermodynamic modelling of meteor entry flows. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2308-2325.	1.6	12
10	High-order Harmonic Generation in Microfluidic Femtosecond Laser Micromachined Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
11	High-order Harmonic Generation in Femtosecond Laser Micromachined Microfluidic Glass Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
12	A kinetic model for evaporation of a simple fluid from nanopores. , 2019, , .		0
13	Kinetic theory description of gas adsorption-desorption on a solid surface. AIP Conference Proceedings, 2019, , .	0.3	6
14	Dense gas effects in the Rayleigh-Brillouin scattering spectra of SF6. Chemical Physics Letters, 2019, 731, 136595.	1.2	9
15	Grad's 13 moments approximation for Enskog-Vlasov equation. AIP Conference Proceedings, 2019, , .	0.3	10
16	Direct simulation Monte Carlo applications to liquid-vapor flows. Physics of Fluids, 2019, 31, .	1.6	39
17	Aerothermodynamic modelling of meteor entry flows in the rarefied regime. , 2018, , .		4
18	Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum. Physical Review Fluids, 2018, 3, .	1.0	35

ALDO FREZZOTTI

#	Article	IF	CITATIONS
19	Rayleigh–Brillouin scattering in molecular Oxygen by CT-DSMC simulations. European Journal of Mechanics, B/Fluids, 2017, 64, 8-16.	1.2	10
20	Molecular tagging velocimetry by direct phosphorescence in gas microflows: Correction of Taylor dispersion. Experimental Thermal and Fluid Science, 2017, 83, 177-190.	1.5	11
21	A comparison of models for the evaporation of the Lennard-Jones fluid. European Journal of Mechanics, B/Fluids, 2017, 64, 69-80.	1.2	17
22	Evaporation boundary conditions for the R13 equations of rarefied gas dynamics. Physics of Fluids, 2017, 29, .	1.6	25
23	Kinetic theory aspects of non-equilibrium liquid-vapor flows. Mechanical Engineering Reviews, 2017, 4, 16-00540-16-00540.	4.7	29
24	Simulations of condensation flows induced by reflection of weak shocks from liquid surfaces. AIP Conference Proceedings, 2016, , .	0.3	1
25	Evaporation/condensation boundary conditions for the regularized 13 moment equations. AIP Conference Proceedings, 2016, , .	0.3	3
26	DSMC simulation of Rayleigh-Brillouin scattering in binary mixtures. AIP Conference Proceedings, 2016, , .	0.3	2
27	Development of a melting model for meteors. AIP Conference Proceedings, 2016, , .	0.3	7
28	Effect of vibrational degrees of freedom on the heat transfer in polyatomic gases confined between parallel plates. International Journal of Heat and Mass Transfer, 2016, 102, 162-173.	2.5	23
29	Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo. Physics of Fluids, 2015, 27, .	1.6	19
30	Conductive heat transfer in rarefied polyatomic gases confined between parallel plates via various kinetic models and the DSMC method. International Journal of Heat and Mass Transfer, 2015, 88, 636-651.	2.5	30
31	Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis. Microfluidics and Nanofluidics, 2015, 19, 1335-1348.	1.0	13
32	A kinetic theory description of liquid menisci at the microscale. Kinetic and Related Models, 2015, 8, 235-254.	0.5	51
33	Oxygen transport properties estimation by DSMC-CT simulations. , 2014, , .		1
34	A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation. , 2014, , .		4
35	DSMC simulation of rarefied gas mixtures flows driven by arrays of absorbing plates. Vacuum, 2014, 103, 57-67.	1.6	14
36	Conductive heat transfer in a rarefied polyatomic gas confined between coaxial cylinders. International Journal of Heat and Mass Transfer, 2014, 79, 378-389.	2.5	22

Aldo Frezzotti

#	Article	IF	CITATIONS
37	Slip effects at the vapor-liquid boundary. AIP Conference Proceedings, 2012, , .	0.3	4
38	A kinetic model for capillary flows in MEMS. , 2012, , .		1
39	Rarefied gas mixtures flows driven by surface absorption. Vacuum, 2012, 86, 1731-1738.	1.6	16
40	GPU Acceleration of Rarefied Gas Dynamic Simulations. , 2012, , 173-186.		0
41	Solving model kinetic equations on GPUs. Computers and Fluids, 2011, 50, 136-146.	1.3	19
42	Solving the Boltzmann equation on GPUs. Computer Physics Communications, 2011, 182, 2445-2453.	3.0	38
43	Non-equilibrium structure of the vapor-liquid interface of a binary fluid. AIP Conference Proceedings, 2011, , .	0.3	12
44	Boundary conditions at the vapor-liquid interface. Physics of Fluids, 2011, 23, .	1.6	75
45	A kinetic model for collisional effects in dense adsorbed gas layers. , 2011, , .		3
46	Direct solution of the Boltzmann equation for a binary mixture on GPUs. , 2011, , .		5
47	A moment method for low speed microflows. Continuum Mechanics and Thermodynamics, 2009, 21, 495-509.	1.4	19
48	A kinetic model for fluid—wall interaction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 787-795.	1.1	15
49	Comparison of Molecular Dynamics and Kinetic Modeling of Gas-Surface Interaction. , 2008, , .		7
50	Using the Kinetic Equations for MEMS and NEMS. Computational and Experimental Methods in Structures, 2008, , 37-80.	0.2	1
51	On the Application of the Boltzmann Equation to the Simulation of Fluid Structure Interaction in Micro-Electro-Mechanical-Systems. Sensor Letters, 2008, 6, 121-129.	0.4	6
52	Analysis of Gas Flow in MEMS by a Deterministic 3D BGK Kinetic Model. Sensor Letters, 2008, 6, 69-75.	0.4	2
53	Kinetic Approach to Gas Flows in Microchannels. Nanoscale and Microscale Thermophysical Engineering, 2007, 11, 211-226.	1.4	26
54	On the application of the BGK kinetic model to the analysis of gas-structure interactions in MEMS. Computers and Structures, 2007, 85, 810-817.	2.4	37

Aldo Frezzotti

#	Article	IF	CITATIONS
55	A numerical investigation of the steady evaporation of a polyatomic gas. European Journal of Mechanics, B/Fluids, 2007, 26, 93-104.	1.2	51
56	KINETIC MODELS FOR NANOFLUIDICS. , 2007, , .		0
57	Kinetic theory study of steady condensation of a polyatomic gas. Physics of Fluids, 2006, 18, 027101.	1.6	24
58	Mean field kinetic theory description of evaporation of a fluid into vacuum. Physics of Fluids, 2005, 17, 012102.	1.6	97
59	A Kinetic Model for Vapor-liquid Flows. AIP Conference Proceedings, 2005, , .	0.3	0
60	Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Physics of Fluids, 2004, 16, 223-243.	1.6	93
61	Evidence of an inverted temperature gradient during evaporation/condensation of a Lennard-Jones fluid. Physics of Fluids, 2003, 15, 2837.	1.6	24
62	A Kinetic Model for Equilibrium and Non-Equilibrium Structure of the Vapor-Liquid Interface. AIP Conference Proceedings, 2003, , .	0.3	5
63	DSMC simulation of the vertical structure of planetary rings. Astronomy and Astrophysics, 2001, 380, 761-775.	2.1	2
64	Monte Carlo simulation of the uniform shear flow in a dense rough sphere fluid. Physica A: Statistical Mechanics and Its Applications, 2000, 278, 161-180.	1.2	11
65	Monte Carlo simulation of the heat flow in a dense hard sphere gas. European Journal of Mechanics, B/Fluids, 1999, 18, 103-119.	1.2	28
66	Direct statistical simulation of gas mixture mass transfer in a porous layer with condensation of one of the components and absorption of another. International Journal of Heat and Mass Transfer, 1999, 42, 2063-2069.	2.5	6
67	The structure of an infinitely strong shock wave. Physics of Fluids, 1999, 11, 2757-2764.	1.6	45
68	Molecular dynamics and Enskog theory calculation of shock profiles in a dense hard sphere gas. Computers and Mathematics With Applications, 1998, 35, 103-112.	1.4	11
69	Kinetic theory study of steady evaporation from a spherical condensed phase containing inert solid particles. Physics of Fluids, 1997, 9, 211-225.	1.6	8
70	A particle scheme for the numerical solution of the Enskog equation. Physics of Fluids, 1997, 9, 1329-1335.	1.6	88
71	Molecular dynamics and Enskog theory calculation of one dimensional problems in the dynamics of dense gases. Physica A: Statistical Mechanics and Its Applications, 1997, 240, 202-211.	1.2	11
72	Hypersonic rarefied flows DSMC analysis by a simplified chemical model. Meccanica, 1995, 30, 93-104.	1.2	4

ALDO FREZZOTTI

#	Article	IF	CITATIONS
73	Comments on â€~â€~Extension of the Mottâ€Smith method to denser gases'' [Phys. Fluids A 4, 1856 (19 Physics of Fluids, 1995, 7, 1507-1509.	92)]. 1.6	1
74	Interaction of evaporating and condensing particles in the freeâ€molecular regime. Physics of Fluids, 1995, 7, 1775-1781.	1.6	8
75	Direct numerical solution of the Boltzmann equation on a parallel computer. Computers and Fluids, 1993, 22, 1-8.	1.3	3
76	Numerical analysis of a shock-wave solution of the Enskog equation obtained via a Monte Carlo method. Journal of Statistical Physics, 1993, 73, 193-207.	0.5	24
77	On the absence of motion in certain nonequilibrium states of gases and vapors in freeâ€molecular regime: General considerations and pipe flow. Physics of Fluids A, Fluid Dynamics, 1993, 5, 2551-2556.	1.6	5
78	Direct simulation of hypersonic rarefied flows past a delta wing. Transport Theory and Statistical Physics, 1992, 21, 343-356.	0.4	2
79	Numerical study of the strong evaporation of a binary mixture. Fluid Dynamics Research, 1991, 8, 175-187.	0.6	15
80	Direct numerical solution of the Boltzmann equation for a relaxation problem of a binary mixture of hard sphere gases. Meccanica, 1989, 24, 139-143.	1.2	7
81	The propagation of infinitesimal disturbances in an ultrarelativistic gas according to the method of elementary solutions. Journal of Statistical Physics, 1987, 46, 255-272.	0.5	2
82	High mach number flow of a rarefied gas past an almost specularly reflecting plate. Transport Theory and Statistical Physics, 1986, 15, 973-984.	0.4	1
83	The paradox of the inverted temperature profiles between an evaporating and a condensing surface. Physics of Fluids, 1985, 28, 3237.	1.4	48
84	On the application of the BGK model to the simulation of fluid structure interaction in MEMS. , 0, , .		0