Yi-Jun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027772/publications.pdf Version: 2024-02-01

<u> Уыны 7ни</u>

#	Article	IF	CITATIONS
1	Time-coordinated SPAD-based receiver for high-speed optical wireless communication. Optics Communications, 2023, 526, 128706.	1.0	2
2	Integrated Frame Coding for Short Burst Transmission in Mobile Visible Light Communication Systems. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	1
3	Flexible Design of Low-Delay MEC-VLC Integrating Network Based on Attocell Overlap for IIoT. Electronics (Switzerland), 2022, 11, 924.	1.8	0
4	Gate-Width Optimisation Based on Time-Gated Single Photon Avalanche Diode Receiver for Optical Wireless Communications. Electronics (Switzerland), 2022, 11, 2218.	1.8	1
5	A Passive Target Recognition Method Based on LED Lighting for Industrial Internet of Things. IEEE Photonics Journal, 2021, 13, 1-8.	1.0	8
6	Optimal Bias Current Design for Visible Light Communications Based on LED Electrical-Thermal Effect. IEEE Photonics Journal, 2021, 13, 1-6.	1.0	4
7	A Transceiver Design Based on an Autoencoder Network for Multi-Color VLC Systems. IEEE Photonics Journal, 2020, 12, 1-16.	1.0	5
8	A multi-user joint constellation design of color-shift keying for VLC downlink broadcast channels. Optics Communications, 2020, 473, 126001.	1.0	6
9	Real-time optimal tracking angles of photodiodes for MC-VLC in indoor mobile scenarios. Optics Communications, 2020, 469, 125744.	1.0	2
10	Experimental study on long-distance SPAD-based VLC systems. Journal of Physics: Conference Series, 2019, 1284, 012029.	0.3	0
11	Chromaticity-Adaptive Generalized Spatial Modulation for MIMO VLC With Multi-Color LEDs. IEEE Photonics Journal, 2019, 11, 1-12.	1.0	5
12	Adaptive multi-color shift keying constellation design for visible light communications considering lighting requirement. Optics Communications, 2019, 430, 293-298.	1.0	4
13	Superposition constellation design for multi-user multi-chip visible light communication systems. Optics Communications, 2019, 432, 27-31.	1.0	3
14	Fast-adaptive color-collaborative constellation designs for multicolor multiple-input multiple-output visible light communications systems. Applied Optics, 2019, 58, 1433.	0.9	5
15	Adaptive spatial-layout selection for massive multi-color visible light communications. Applied Optics, 2019, 58, 9786.	0.9	1
16	An Addition-Decomposable Relaying Protocol and Signal Design for Optical Wireless Communications. IEEE Transactions on Vehicular Technology, 2018, 67, 5980-5993.	3.9	5
17	Linear Precoding for MU-MISO VLC Systems With Noisy Channel State Information. IEEE Communications Letters, 2018, 22, 732-735.	2.5	14
18	Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver. Optics Communications, 2018, 410, 889-895.	1.0	29

Үі-Јим Zни

#	Article	IF	CITATIONS
19	Power-Efficient Linear Precoding for MU-MISO VLC Systems With Channel Uncertainty. IEEE Photonics Technology Letters, 2018, 30, 626-629.	1.3	12
20	Linear Optimal Signal Designs for Multi-Color MISO-VLC Systems Adapted to CCT Requirement. IEEE Access, 2018, 6, 75519-75530.	2.6	4
21	Optimal Linear Precodings for Multi-Color, Multi-User Visible Light Communication System with Fairness Considerations. Crystals, 2018, 8, 404.	1.0	1
22	Linear Precoding Designs for MIMO VLC Using Multi-Color LEDs under Multiple Lighting Constraints. Crystals, 2018, 8, 408.	1.0	5
23	Illumination-Adapted Transceiver Design for Quadrichromatic Light-Emitting Diode Based Visible Light Communication. IEEE Photonics Journal, 2018, 10, 1-10.	1.0	6
24	One symbol training receiver for the SPAD-based UVLC system. Applied Optics, 2018, 57, 5852.	0.9	10
25	Channel-Adaptive Space-Collaborative Constellation Design for MIMO VLC With Fast Maximum Likelihood Detection. IEEE Access, 2017, 5, 842-852.	2.6	21
26	On the Ergodic Channel Capacity for Indoor Visible Light Communication Systems. IEEE Access, 2017, 5, 833-841.	2.6	29
27	A Superimposed Relaying Strategy and Power Allocation for Outdoor Visible Light Communications. IEEE Access, 2017, 5, 9555-9561.	2.6	11
28	Space Codes for MIMO Optical Wireless Communications: Error Performance Criterion and Code Construction. IEEE Transactions on Wireless Communications, 2017, 16, 3072-3085.	6.1	19
29	Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications. Optics Communications, 2017, 383, 260-273.	1.0	5
30	Blind Detection for SPAD-Based Underwater VLC System Under P–G Mixed Noise Model. IEEE Communications Letters, 2017, 21, 2602-2605.	2.5	22
31	Efficient signal design and optimal power allocation for visible light communication attocell systems. Applied Optics, 2017, 56, 8959.	0.9	3
32	Experimental study on SPAD-based VLC systems with an LED status indicator. Optics Express, 2017, 25, 28783.	1.7	25
33	Convex relaxation for illumination control of multi-color multiple-input-multiple-output visible light communications with linear minimum mean square error detection. Applied Optics, 2017, 56, 6587.	0.9	19
34	Constellation Collaborated Non-linear Orthogonal Space-Time Block Codes with Fast Maximum Likelihood Detection. IEEE Transactions on Vehicular Technology, 2016, , 1-1.	3.9	3
35	Channel-Adapted Spatial Modulation for Massive MIMO Visible Light Communications. IEEE Photonics Technology Letters, 2016, 28, 2693-2696.	1.3	57
36	Energy-efficient space–time modulation for indoor MISO visible light communications. Optics Letters, 2016, 41, 329.	1.7	15

Үі-Јим Zни

#	Article	IF	CITATIONS
37	Optimal Constellation Design for Indoor 2x2 MIMO Visible Light Communications. IEEE Communications Letters, 2016, 20, 264-267.	2.5	26
38	On the Optimality of Spatial Repetition Coding for MIMO Optical Wireless Communications. IEEE Communications Letters, 2016, 20, 846-849.	2.5	20
39	Full large-scale diversity space codes for MIMO optical wireless communications. , 2015, , .		15
40	Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications. IEEE Photonics Technology Letters, 2015, 27, 1667-1670.	1.3	73
41	Block Markov Superposition Transmission of Short Codes for Indoor Visible Light Communications. IEEE Communications Letters, 2015, 19, 359-362.	2.5	9
42	An Optimal Power Allocation for Multi-LED Phase-Shifted-Based MISO VLC Systems. IEEE Photonics Technology Letters, 2015, 27, 2391-2394.	1.3	11
43	Constellation Collaborated OFDM for Visible Light Communication Systems. IEEE Communications Letters, 2014, 18, 1067-1070.	2.5	7
44	Multi-LED Phase-Shifted OOK Modulation Based Visible Light Communication Systems. IEEE Photonics Technology Letters, 2013, 25, 2251-2254.	1.3	51
45	Energy-Efficient Collaborative Alamouti Codes. IEEE Wireless Communications Letters, 2012, 1, 512-515.	3.2	10
46	Linear Receivers for Full-Diversity Training Space-Time Block Codes. IEEE Transactions on Vehicular Technology, 2012, 61, 2884-2889.	3.9	3