Oscar Laurent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trace element geochemistry of sphalerite and chalcopyrite in arc-hosted VMS deposits. Journal of Geochemical Exploration, 2022, 232, 106882.	3.2	23
2	Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn-Pb-Ag-In-Sn-Cu deposit, Pasco, Peru. Mineralium Deposita, 2022, 57, 481-507.	4.1	12
3	Towards the fertility trend: unraveling the economic potential of igneous suites through whole-rock and zircon geochemistry (example from the Tapajós Mineral Province, Northern Brazil). Ore Geology Reviews, 2022, , 104643.	2.7	0
4	Garnet petrochronology reveals the lifetime and dynamics of phonolitic magma chambers at Somma-Vesuvius. Science Advances, 2022, 8, eabk2184.	10.3	2
5	Biotite as a recorder of an exsolved Li-rich volatile phase in upper-crustal silicic magma reservoirs. Geology, 2022, 50, 481-485.	4.4	12
6	Degassing from magma reservoir to eruption in silicic systems: The Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a Yellowstone rhyolite. Geochimica Et Cosmochimica Acta, 2022, 326, 56-76.	3.9	9
7	Early Earth zircons formed in residual granitic melts produced by tonalite differentiation. Geology, 2022, 50, 437-441.	4.4	15
8	Early Earth zircons formed in residual granitic melts produced by tonalite differentiation: REPLY. Geology, 2022, 50, e553-e553.	4.4	0
9	Fluid Evolution at the Batu Hijau Porphyry Cu-Au Deposit, Indonesia: Hypogene Sulfide Precipitation from a Single-Phase Aqueous Magmatic Fluid During Chlorite–White-Mica Alteration. Economic Geology, 2022, 117, 979-1012.	3.8	10
10	Formation of the Lened W-(Be) Skarn Deposit by Neutralization of a Magmatic Fluid—Evidence from H3BO3-Rich Fluids. Geosciences (Switzerland), 2022, 12, 236.	2.2	0
11	Time scales of syneruptive volatile loss in silicic magmas quantified by Li isotopes. Geology, 2021, 49, 125-129.	4.4	16
12	Trace element composition and U-Pb ages of cassiterite from the Bolivian tin belt. Mineralium Deposita, 2021, 56, 1491-1520.	4.1	30
13	When zircon drowns: Elusive geochronological record of water-fluxed orthogneiss melting in the Velay dome (Massif Central, France). Lithos, 2021, 384-385, 105938.	1.4	4
14	Absolute Age and Temperature Constraints on Deformation Along the Basal Décollement of the Jura Foldâ€andâ€Thrust Belt From Carbonate Uâ€Pb Dating and Clumped Isotopes. Tectonics, 2021, 40, e2020TC006439.	2.8	26
15	Crustal melting vs. fractionation of basaltic magmas: Part 2, Attempting to quantify mantle and crustal contributions in granitoids. Lithos, 2021, 402-403, 106292.	1.4	14
16	Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 2021, 402-403, 106291.	1.4	43
17	Influence of high marine Ca/SO4 ratio on alteration of submarine basalts at 2.41ÂGa documented by triple O and Sr isotopes of epidote. Precambrian Research, 2021, 358, 106164.	2.7	4
18	Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust. Farth and Planetary Science Letters, 2021, 569, 117058	4.4	15

Oscar Laurent

#	Article	IF	CITATIONS
19	Distribution of indium, germanium, gallium and other minor and trace elements in polymetallic ores from a porphyry system: The Morococha district, Peru. Ore Geology Reviews, 2021, 136, 104236.	2.7	16
20	Middle-Late Triassic metamorphism of the Guajira Arch-basement: Insights from zircon U–Pb and Lu–Hf systematics. Journal of South American Earth Sciences, 2021, 110, 103397.	1.4	6
21	Petrochronology of hydrothermal rutile in mineralized porphyry Cu systems. Chemical Geology, 2021, 581, 120407.	3.3	12
22	Metasomatism and cyclic skarn growth along lithological contacts: Physical and geochemical evidence from a distal Pb Zn skarn. Lithos, 2021, 400-401, 106408.	1.4	5
23	The upper Oligocene San Rafael intrusive complex (Eastern Cordillera, southeast Peru), host of the largest-known high-grade tin deposit. Lithos, 2021, 400-401, 106409.	1.4	6
24	Multiple tectonic-magmatic Mo-enrichment events in Yuleken porphyry Cu-Mo deposit, NW China and its' implications for the formation of giant porphyry Mo deposit. Ore Geology Reviews, 2021, 139, 104401.	2.7	6
25	Advantages of a fast-scanning quadrupole for LA-ICP-MS analysis of fluid inclusions. Journal of Analytical Atomic Spectrometry, 2021, 36, 2043-2050.	3.0	6
26	Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System,) Tj ETQq0 0 0 r Petrology, 2021, 176, 1.	gBT /Overl 3.1	ock 10 Tf 50 6
27	Zircon U-Pb geochronology and geochemistry of Late Devonian–Carboniferous granitoids in NW Iran: implications for the opening of Paleo-Tethys. International Geology Review, 2020, 62, 1931-1948.	2.1	23
28	Recognition and significance of <i>c.</i> 800â€Ma upper amphibolite to granulite facies metamorphism in metasedimentary rocks from the NW margin of the Yangtze Block. Journal of the Geological Society, 2020, 177, 424-441.	2.1	14
29	Sequential evolution of Sn–Zn–In mineralization at the skarn-hosted Hämerlein deposit, Erzgebirge, Germany, from fluid inclusions in ore and gangue minerals. Mineralium Deposita, 2020, 55, 937-952.	4.1	17
30	Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nature Geoscience, 2020, 13, 163-169.	12.9	141
31	Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany. Journal of Metamorphic Geology, 2020, 38, 207-234.	3.4	25
32	Fluid evolution of the Cantung tungsten skarn, Northwest Territories, Canada: Differentiation and fluid-rock interaction. Ore Geology Reviews, 2020, 127, 103866.	2.7	14
33	Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. Bulletin - Societie Geologique De France, 2020, 191, 25.	2.2	49
34	Tourmaline as a Tracer of Late-Magmatic to Hydrothermal Fluid Evolution: The World-Class San Rafael Tin (-Copper) Deposit, Peru. Economic Geology, 2020, 115, 1665-1697.	3.8	43
35	Quantifying frozen melt in crustal rocks: A new melt-o-meter based on zircon rim volumes. Chemical Geology, 2020, 551, 119755.	3.3	5
36	Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology, 2020, 48, 1028-1032.	4.4	22

OSCAR LAURENT

#	Article	IF	CITATIONS
37	Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW-Germany. Journal of Geochemical Exploration, 2020, 212, 106512.	3.2	9
38	Melt and fluid evolution in an upper-crustal magma reservoir, preserved by inclusions in juvenile clasts from the Kos Plateau Tuff, Aegean Arc, Greece. Geochimica Et Cosmochimica Acta, 2020, 280, 237-262.	3.9	24
39	Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material. Geochronology, 2020, 2, 155-167.	2.5	46
40	Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Research, 2019, 324, 269-284.	2.7	27
41	Granitoids and Greenstone Belts of the Pietersburg Block—Witnesses of an Archaean Accretionary Orogen Along the Northern Edge of the Kaapvaal Craton. Regional Geology Reviews, 2019, , 83-107.	1.2	15
42	Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: The case of the Mesa Falls Tuff, Yellowstone. Chemical Geology, 2019, 506, 175-186.	3.3	39
43	Building up the first continents: Mesoarchean to Paleoproterozoic crustal evolution in West Troms, Norway, inferred from granitoid petrology, geochemistry and zircon U-Pb/Lu-Hf isotopes. Precambrian Research, 2019, 321, 303-327.	2.7	25
44	Archaean tectonic systems: A view from igneous rocks. Lithos, 2018, 302-303, 99-125.	1.4	200
45	A record of 0.5†Ga of evolution of the continental crust along the northern edge of the Kaapvaal Craton, South Africa: Consequences for the understanding of Archean geodynamic processes. Precambrian Research, 2018, 305, 310-326.	2.7	17
46	Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 2018, 476, 260-271.	3.3	28
47	Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 2018, 46, 75-78.	4.4	135
48	Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central. International Journal of Earth Sciences, 2018, 107, 2819-2842.	1.8	32
49	Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences, 2017, 106, 421-451.	1.8	89
50	Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Research, 2017, 46, 170-190.	6.0	53
51	Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin. Lithos, 2017, 286-287, 16-34.	1.4	34
52	Source constraints on the genesis of Danubian granites in the South Carpathians Alpine Belt (Romania). Lithos, 2017, 294-295, 198-221.	1.4	3
53	How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	62
54	Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos, 2017, 277, 154-177.	1.4	233

Oscar Laurent

#	Article	IF	CITATIONS
55	Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth and Planetary Science Letters, 2016, 456, 182-195.	4.4	161
56	3.30 Ga high-silica intraplate volcanic–plutonic system of the Gavião Block, São Francisco Craton, Brazil: Evidence of an intracontinental rift following the creation of insulating continental crust. Lithos, 2016, 266-267, 414-434.	1.4	36
57	Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana); New insights from U-Pb-Hf zircon data and geochemistry. Precambrian Research, 2016, 287, 1-30.	2.7	54
58	A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa). Earth and Planetary Science Letters, 2015, 430, 326-338.	4.4	106
59	Comment on "Ultrahigh temperature granulites and magnesian charnockites: Evidence for the Neoarchean accretion along the northern margin of the Kaapvaal craton―by Rajesh et al Precambrian Research, 2014, 255, 455-458.	2.7	7
60	Contrasting petrogenesis of Mg–K and Fe–K granitoids and implications for post-collisional magmatism: Case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos, 2014, 196-197, 131-149.	1.4	83
61	The diversity and evolution of late-Archean granitoids: Evidence for the onset of "modern-style―plate tectonics between 3.0 and 2.5Ga. Lithos, 2014, 205, 208-235.	1.4	557
62	LA-ICP-MS dating of zircons from Meso- and Neoarchean granitoids of the Pietersburg block (South) Tj ETQq0 0 230, 209-226.	0 rgBT /0 [.] 2.7	verlock 10 Tf 51
63	Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. Precambrian Research, 2013, 227, 186-203.	2.7	57
64	Geochemistry and petrogenesis of high-K "sanukitoids―from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary. Lithos, 2011, 123, 73-91.	1.4	77
65	Low-potassium vaugnerites from Gu�2ret (Massif Central, France). Mafic magma evolution influenced by contemporaneous granitoids. Mineralogy and Petrology, 1997, 59, 165-187.	1.1	8
66	Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite. Geology, 0, , ,	4.4	7
67	Accessory mineral constraints on crustal evolution: elemental fingerprints for magma discrimination. Geochemical Perspectives Letters, 0, , 7-12.	5.0	40