
RamÃ³n Torrecillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027237/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 2002, 23, 937-945.	11.4	513
2	Graphene for tough and electroconductive alumina ceramics. Journal of the European Ceramic Society, 2013, 33, 3201-3210.	5.7	183
3	Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials, 2008, 29, 3636-3641.	11.4	178
4	Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. Journal of the European Ceramic Society, 2003, 23, 2975-2982.	5.7	157
5	Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 2019, 11, 81.	4.1	147
6	Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. , 0, , .		126
7	Microstructure development in calcium hexaluminate. Journal of the European Ceramic Society, 2001, 21, 381-387.	5.7	119
8	Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications. Journal of Electronic Materials, 2014, 43, 1703-1711.	2.2	119
9	Wear behavior of graphene/alumina composite. Ceramics International, 2015, 41, 7434-7438.	4.8	118
10	Alumina nanocomposites from powder–alkoxide mixtures. Acta Materialia, 2002, 50, 1125-1139.	7.9	117
11	Slowâ€Crackâ€Growth Behavior of Zirconiaâ€Toughened Alumina Ceramics Processed by Different Methods. Journal of the American Ceramic Society, 2003, 86, 115-120.	3.8	96
12	Thermomechanical Behavior of Highâ€Alumina Refractory Castables with Synthetic Spinel Additions. Journal of the American Ceramic Society, 2000, 83, 2481-2490.	3.8	92
13	Percolative Mechanism of Aging in Zirconia-Containing Ceramics for Medical Applications. Advanced Materials, 2003, 15, 507-511.	21.0	83
14	Effect of spinel content on slag attack resistance of high alumina refractory castables. Journal of the European Ceramic Society, 2007, 27, 4623-4631.	5.7	82
15	Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite. Journal of Nanomaterials, 2009, 2009, 1-6.	2.7	82
16	Nanostructured Ceramic Oxides with a Slow Crack Growth Resistance Close to Covalent Materials. Nano Letters, 2005, 5, 1297-1301.	9.1	79
17	The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. International Journal of Nanomedicine, 2016, Volume 11, 6297-6306.	6.7	78
18	Thermomechanical properties and fracture mechanisms of calcium hexaluminate. Journal of the European Ceramic Society, 2001, 21, 907-917.	5.7	77

RAMÃ³N TORRECILLAS

#	Article	IF	CITATIONS
19	Effect of graphene addition on the mechanical and electrical properties of Al 2 O 3 -SiCw ceramics. Journal of the European Ceramic Society, 2017, 37, 2473-2479.	5.7	75
20	Suitability of mullite for high temperature applications. Journal of the European Ceramic Society, 1999, 19, 2519-2527.	5.7	67
21	Reliability assessment in advanced nanocomposite materials for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 303-314.	3.1	63
22	On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres. Optics Express, 2009, 17, 6899.	3.4	62
23	Microstructural Investigation of the Aging Behavior of (3Y-TZP)-Al2O3 Composites. Journal of the American Ceramic Society, 2005, 88, 1273-1280.	3.8	57
24	Extending the Lifetime of Ceramic Orthopaedic Implants. Advanced Materials, 2000, 12, 1619-1621.	21.0	52
25	Advanced nanocomposite materials for orthopaedic applications. I. A long-termin vitro wear study of zirconia-toughened alumina. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 76-82.	3.4	50
26	Alumina/Zirconia Micro/Nanocomposites: A New Material for Biomedical Applications With Superior Sliding Wear Resistance. Journal of the American Ceramic Society, 2007, 90, 3177-3184.	3.8	49
27	A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications. Scientific Reports, 2014, 4, 5440.	3.3	49
28	Thermal degradation of bismaleimide and bisnadimide networks—products of thermal degradation and type of crosslinking points. Polymer Degradation and Stability, 1996, 51, 307-318.	5.8	47
29	Thermal degradation of high performance polymers—influence of structure on polyimide thermostability. Polymer Degradation and Stability, 1996, 54, 267-274.	5.8	45
30	Zirconia–multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance. Journal of the European Ceramic Society, 2011, 31, 1009-1014.	5.7	45
31	Antibacterial and Antifungal Activity of ZnO Containing Glasses. PLoS ONE, 2015, 10, e0132709.	2.5	45
32	Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. Journal of the European Ceramic Society, 2011, 31, 1389-1395.	5.7	44
33	Effect of TiC addition on the mechanical behaviour of Al 2 O 3 –SiC whiskers composites obtained by SPS. Journal of the European Ceramic Society, 2016, 36, 2149-2152.	5.7	44
34	Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scripta Materialia, 2010, 63, 170-173.	5.2	43
35	Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route. Journal of the European Ceramic Society, 2010, 30, 1489-1494.	5.7	43
36	Alumina reinforced eucryptite ceramics: Very low thermal expansion material with improved mechanical properties. Journal of the European Ceramic Society, 2011, 31, 1641-1648.	5.7	42

#	Article	IF	CITATIONS
37	Alumina-rich refractory concretes with added spinel, periclase and dolomite: A comparative study of their microstructural evolution with temperature. Journal of the European Ceramic Society, 2005, 25, 1499-1506.	5.7	39
38	Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites. Composites Science and Technology, 2008, 68, 1392-1398.	7.8	39
39	Thermomechanical behaviour of mullite. Acta Materialia, 1997, 45, 897-906.	7.9	38
40	New spinel-containing refractory cements. Journal of the European Ceramic Society, 2003, 23, 737-744.	5.7	38
41	Influence of different parameters on calcium hexaluminate reaction sintering by Spark Plasma. Ceramics International, 2012, 38, 5325-5332.	4.8	37
42	DNA methylation changes in human lung epithelia cells exposed to multi-walled carbon nanotubes. Nanotoxicology, 2017, 11, 857-870.	3.0	36
43	Mechanical and biological evaluation of 3D printed 10CeTZP-Al 2 O 3 structures. Journal of the European Ceramic Society, 2017, 37, 3151-3158.	5.7	34
44	Silver nanoparticles supported on α-, Πand δ-alumina. Journal of the European Ceramic Society, 2006, 26, 1-7.	5.7	33
45	Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic–CNFs composites. Wear, 2012, 274-275, 94-99.	3.1	33
46	Mullite-refractory metal (Mo, Nb) composites. Journal of the European Ceramic Society, 2008, 28, 479-491.	5.7	32
47	Alumina/tungsten nanocomposites obtained by Spark Plasma Sintering. Composites Science and Technology, 2009, 69, 2467-2473.	7.8	32
48	Inhibitory Effect on In Vitro Streptococcus oralis Biofilm of a Soda-Lime Glass Containing Silver Nanoparticles Coating on Titanium Alloy. PLoS ONE, 2012, 7, e42393.	2.5	32
49	Transparent Alumina/Ceria Nanocomposites By Spark Plasma Sintering. Advanced Engineering Materials, 2010, 12, 1154-1160.	3.5	31
50	Ceramic/metal biocidal nanocomposites for bone-related applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 1655-1662.	3.6	30
51	Diamondâ€like Hardening of Alumina/Ni Nanocomposites. Advanced Engineering Materials, 2007, 9, 898-901.	3.5	29
52	Conventional sintering of LAS–SiC nanocomposites with very low thermal expansion coefficient. Journal of the European Ceramic Society, 2010, 30, 3219-3225.	5.7	29
53	Processing and Spark Plasma Sintering of zirconia/titanium cermets. Ceramics International, 2013, 39, 6931-6936.	4.8	29
54	Grain growth control and transparency in spark plasma sintered self-doped alumina materials. Scripta Materialia, 2009, 61, 931-934.	5.2	28

RAMÃ³N TORRECILLAS

#	Article	IF	CITATIONS
55	Electroconductive Alumina–TiC–Ni nanocomposites obtained by Spark Plasma Sintering. Ceramics International, 2011, 37, 1631-1636.	4.8	28
56	Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites. Journal of Materials Science, 2014, 49, 3823-3830.	3.7	28
57	Creep behaviour of alumina/YAG nanocomposites obtained by a colloidal processing route. Journal of the European Ceramic Society, 2007, 27, 143-150.	5.7	27
58	Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials. International Journal of Materials Research, 2010, 101, 122-127.	0.3	27
59	Electrically conductor black zirconia ceramic by SPS using graphene oxide. Journal of Electroceramics, 2017, 38, 119-124.	2.0	27
60	Room temperature mechanical properties of high alumina refractory castables with spinel, periclase and dolomite additions. Journal of the European Ceramic Society, 2008, 28, 2853-2858.	5.7	26
61	Electrical discharge machining of ceramic/semiconductor/metal nanocomposites. Scripta Materialia, 2010, 63, 219-222.	5.2	26
62	Alumina/molybdenum nanocomposites obtained in organic media. Journal of the European Ceramic Society, 2003, 23, 2829-2834.	5.7	25
63	Nanotechnology in joint replacement. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 540-552.	6.1	25
64	Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate. Journal of the European Ceramic Society, 1998, 18, 1373-1379.	5.7	24
65	Thermomechanical behavior of a zircon–mullite composite. Ceramics International, 2007, 33, 655-662.	4.8	23
66	Hot bending strength and creep behaviour at 1000–1400°C of high alumina refractory castables with spinel, periclase and dolomite additions. Journal of the European Ceramic Society, 2009, 29, 53-58.	5.7	23
67	Porcelain stoneware obtained from the residual muds of serpentinite raw materials. Journal of the European Ceramic Society, 2007, 27, 2341-2345.	5.7	22
68	Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog. PLoS ONE, 2014, 9, e86926.	2.5	22
69	Mechanical performance of a biocompatible biocide soda–lime glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 302-312.	3.1	22
70	Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Composites Science and Technology, 2011, 71, 18-22.	7.8	21
71	Microstructural design for mechanical and electrical properties of spark plasma sintered Al2O3–SiC nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 693-698.	5.6	21
72	Current stateâ€ofâ€theâ€art and future perspectives of the three main modern implantâ€dentistry concerns: Aesthetic requirements, mechanical properties, and periâ€implantitis prevention. Journal of Biomedical Materials Research - Part A, 2019, 107, 1466-1475.	4.0	21

RamÃ³N TORRECILLAS

#	Article	IF	CITATIONS
73	Microstructure and mechanical properties of mullite-zirconia reaction-sintered composites. Acta Metallurgica Et Materialia, 1993, 41, 1647-1652.	1.8	20
74	Ceria doped alumina by Spark Plasma Sintering for optical applications. Journal of the European Ceramic Society, 2012, 32, 2917-2924.	5.7	20
75	Microstructural design of Al2O3–SiC nanocomposites by Spark Plasma Sintering. Ceramics International, 2016, 42, 17248-17253.	4.8	20
76	The Development of Bioactive Glass eramic Substrates with Biocide Activity. Advanced Engineering Materials, 2011, 13, B462.	3.5	19
77	Synthesis and processing of spinel powders for transparent ceramics. Ceramics International, 2014, 40, 4065-4069.	4.8	19
78	Bone tissue scaffolds based on antimicrobial SiO2–Na2O–Al2O3–CaO–B2O3 glass. Journal of Non-Crystalline Solids, 2016, 432, 73-80.	3.1	19
79	Improved high-temperature mechanical properties of zirconia-doped mullite. Journal of Materials Science Letters, 1990, 9, 1400-1402.	0.5	18
80	Transparent Yttrium Aluminium Garnet Obtained by Spark Plasma Sintering of Lyophilized Gels. Journal of Nanomaterials, 2009, 2009, 1-5.	2.7	18
81	Solid state sintering of very low and negative thermal expansion ceramics by Spark Plasma Sintering. Ceramics International, 2011, 37, 1079-1083.	4.8	18
82	Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics. Scripta Materialia, 2013, 68, 603-606.	5.2	18
83	Biocide glass–ceramic coating on titanium alloy and zirconium oxide for dental applications. Materials Letters, 2013, 111, 59-62.	2.6	18
84	Zirconia–alumina–nanodiamond composites with gemological properties. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	18
85	Performance of a New Al2O3/Ce–TZP Ceramic Nanocomposite Dental Implant: A Pilot Study in Dogs Materials, 2017, 10, 614.	2.9	18
86	Experimental characterisation of high temperature creep resistance of mullite. Ceramics International, 1997, 23, 497-507.	4.8	17
87	Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency. Journal of Alloys and Compounds, 2010, 493, 391-395.	5.5	17
88	Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates. International Journal of Molecular Sciences, 2014, 15, 13030-13044.	4.1	17
89	Radiologic Evaluation of Bone Loss at Implants with Biocide Coated Titanium Abutments: A Study in the Dog. PLoS ONE, 2012, 7, e52861.	2.5	16
90	Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments. PLoS ONE, 2015, 10, e0140374.	2.5	16

RamÃ³N TORRECILLAS

#	Article	IF	CITATIONS
91	Functionally Graded Zircon–Molybdenum Materials without Residual Stresses. Journal of the American Ceramic Society, 2000, 83, 454-456.	3.8	15
92	Heterogeneous precipitation of silver nanoparticles on kaolinite plates. Nanotechnology, 2010, 21, 475705.	2.6	15
93	Mechanism of calcium lixiviation in soda-lime glasses with a strong biocide activity. Materials Letters, 2012, 70, 113-115.	2.6	15
94	Nanostructured Al–ZrAl3 materials consolidated via spark plasma sintering: Evaluation of their mechanical properties. Journal of Alloys and Compounds, 2013, 550, 402-405.	5.5	15
95	Microstructural development and mechanical performance of mullite-alumina and hibonite-alumina ceramics with controlled addition of a glass phase. Ceramics International, 2018, 44, 2292-2299.	4.8	15
96	High Temperature Behaviour of a Zircon Ceramic. Key Engineering Materials, 1997, 132-136, 571-574.	0.4	14
97	Biocide activity of diatom-silver nanocomposite. Materials Letters, 2010, 64, 2122-2125.	2.6	14
98	High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 2010, 101, 112-116.	0.3	14
99	Improvement of Carbon Nanofibers/ZrO ₂ Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method. Journal of the American Ceramic Society, 2011, 94, 2048-2052.	3.8	14
100	High-velocity suspension flame sprayed (HVSFS) soda-lime glass coating on titanium substrate: Its bactericidal behaviour. Journal of the European Ceramic Society, 2016, 36, 2653-2658.	5.7	14
101	Mechanically Stable Monoclinic Zirconia–Nickel Composite. Journal of the American Ceramic Society, 2002, 85, 2119-2121.	3.8	13
102	Spark Plasma Sintering of Ultrafine TiC _{<i>x</i>} N _{1â^'<i>x</i>} Powders Synthesized by a Mechanically Induced Self‧ustaining Reaction. Journal of the American Ceramic Society, 2010, 93, 2252-2256.	3.8	13
103	Soda-lime glass-coating containing silver nanoparticles on Ti–6Al–4V alloy. Journal of the European Ceramic Society, 2012, 32, 2723-2729.	5.7	13
104	Analysis of the upconversion processes of Nd3+ ions in transparent YAG ceramics. Ceramics International, 2014, 40, 15951-15956.	4.8	13
105	Multifunctional ceramic-metal biocomposites with Zinc containing antimicrobial glass coatings. Ceramics International, 2016, 42, 7023-7029.	4.8	13
106	Interfacial reaction in zircon-alumina multilayer composites. Journal of the European Ceramic Society, 1991, 7, 27-30.	5.7	12
107	Wear behaviour, fluorescence and SEM investigations on nanocomposite zirconia-toughened alumina. Journal of Materials Science, 2006, 41, 5310-5316.	3.7	12
108	Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces. Nanotechnology, 2008, 19, 215605.	2.6	12

#	Article	IF	CITATIONS
109	Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials. Science and Technology of Advanced Materials, 2012, 13, 015007.	6.1	12
110	Effect of yttria–titanium shell–core structured powder on strength and ageing of zirconia/titanium composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 96-100.	5.6	12
111	Antimicrobial activity of submicron glass fibres incorporated as a filler to a dental sealer. Biomedical Materials (Bristol), 2016, 11, 045014.	3.3	12
112	Novel antimicrobial phosphate-free glass–ceramic scaffolds for bone tissue regeneration. Scientific Reports, 2020, 10, 13171.	3.3	12
113	Al2O3-ZrO2-SiO2 Ternary Glasses for Molybdenum Oxidation Barriers. Journal of the American Ceramic Society, 2005, 88, 1000-1003.	3.8	11
114	Phase development and high temperature deformation in high alumina refractory castables with dolomite additions. Journal of the European Ceramic Society, 2007, 27, 67-72.	5.7	11
115	Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design. Journal of the American Ceramic Society, 2013, 96, 2039-2041.	3.8	11
116	Strong pinning effect of alumina/nanodiamond composites obtained by pulsed electric current sintering. Journal of the European Ceramic Society, 2013, 33, 2043-2048.	5.7	10
117	Spark Plasma Sintered Si ₃ N ₄ /TiN Nanocomposites Obtained by a Colloidal Processing Route. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	10
118	Water microbial disinfection via supported nAg/Kaolin in a fixed-bed reactor configuration. Applied Clay Science, 2020, 184, 105387.	5.2	10
119	Novel Technique for Zirconia-Coated Mullite. Journal of the American Ceramic Society, 1993, 76, 1869-1872.	3.8	9
120	Effect of carbon nanofibers content on thermal properties of ceramic nanocomposites. Journal of Composite Materials, 2012, 46, 1229-1234.	2.4	9
121	Alumina–Carbon Nanofibers Nanocomposites Obtained by Spark Plasma Sintering for Proton Exchange Membrane Fuel Cell Bipolar Plates. Fuel Cells, 2012, 12, 599-605.	2.4	9
122	Effect of freeze-drying treatment on the optical properties of SPS-sintered alumina. Ceramics International, 2013, 39, 6669-6672.	4.8	9
123	Nanocomposites of silver nanoparticles embedded in glass nanofibres obtained by laser spinning. Nanoscale, 2013, 5, 3948.	5.6	9
124	The non-isothermal kinetics of mullite formation in boehmite–zircon mixtures. Journal of Thermal Analysis and Calorimetry, 2014, 116, 795-803.	3.6	9
125	In vitro biofilm formation on different ceramic biomaterial surfaces: Coating with two bactericidal glasses. Dental Materials, 2019, 35, 883-892.	3.5	9
126	Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates. PLoS ONE, 2012, 7, e33135.	2.5	9

#	Article	IF	CITATIONS
127	Broad virus inactivation using inorganic micro/nano-particulate materials. Materials Today Bio, 2022, 13, 100191.	5.5	9
128	Microstructure and mechanical behaviour of eutectoid corundum-rutile composites. Ceramics International, 1990, 16, 375-380.	4.8	8
129	High Temperature Creep of Polycrystalline Mullite. Key Engineering Materials, 1997, 132-136, 587-590.	0.4	8
130	Subcritical crack propagation under cyclic and static loading in mullite and mullite-zirconia. Journal of the European Ceramic Society, 1998, 18, 221-227.	5.7	8
131	Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites. International Journal of Materials Research, 2010, 101, 117-121.	0.3	8
132	Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study. Materials Research Bulletin, 2012, 47, 285-289.	5.2	8
133	Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs. Scientific Reports, 2016, 6, 31478.	3.3	8
134	Manufacturing optimisation of an original nanostructured (beta + gamma)-TiNbTa material. Journal of Materials Research and Technology, 2019, 8, 2573-2585.	5.8	8
135	Bactericidal ZnO glass-filled thermoplastic polyurethane and polydimethyl siloxane composites to inhibit biofilm-associated infections. Scientific Reports, 2019, 9, 2762.	3.3	8
136	Development of Advanced Zirconia-Toughened Alumina Nanocomposites for Orthopaedic Applications. Key Engineering Materials, 2004, 264-268, 2013-2016.	0.4	7
137	Micro/nano composites: a simple and safe way to fabricate nanomaterials. International Journal of Nanotechnology, 2007, 4, 282.	0.2	7
138	Ceramic/metal nanocomposites by lyophilization: Spark plasma sintering and hardness. Ceramics International, 2014, 40, 4135-4140.	4.8	7
139	Spark plasma sintering of zirconia/nano-nickel composites. Mechanics and Industry, 2015, 16, 703.	1.3	7
140	Black zirconia-graphene nanocomposite produced by spark plasma sintering. AIP Conference Proceedings, 2016, , .	0.4	7
141	Longerâ€lasting Al ₂ O ₃ â€5iC _w â€TiC cutting tools obtained by spark plasma sintering. International Journal of Applied Ceramic Technology, 2017, 14, 367-373.	2.1	7
142	Effect of green body density on the properties of graphite-molybdenum-titanium composite sintered by spark plasma sintering. Journal of the European Ceramic Society, 2022, 42, 2048-2054.	5.7	7
143	Crack propagation behaviour in mullite at high temperatures by double-torsion technique. Journal of the European Ceramic Society, 1997, 17, 85-89.	5.7	6
144	Crack Growth Resistance of Zirconia Toughened Alumina Ceramics for Joint Prostheses. Key Engineering Materials, 2002, 206-213, 1535-1538.	0.4	6

RAMÃ³N TORRECILLAS

#	Article	IF	CITATIONS
145	Creep behaviour of alumina–mullite–zirconia nanocomposites obtained by a colloidal processing route. Journal of the European Ceramic Society, 2007, 27, 4613-4621.	5.7	6
146	Laser-beam modulation to improve efficiency of selecting laser melting for metal powders. , 2014, , .		6
147	No genome-wide DNA methylation changes found associated with medium-term reduced graphene oxide exposure in human lung epithelial cells. Epigenetics, 2020, 15, 283-293.	2.7	6
148	Synthesis and sintering at low temperature of a new nanostructured beta-Eucryptite dense compact by spark plasma sintering. Ceramics International, 2020, 46, 18469-18477.	4.8	6
149	Determination of KISCC by indentation in ceramics. Journal of Materials Science, 1990, 25, 5077-5080.	3.7	5
150	Functionalization of Carbon Nanofibres Obtained by Floating Catalyst Method. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	5
151	Alumina-alumina and mullite-mullite joining by reaction sintering process. Scripta Metallurgica Et Materialia, 1994, 31, 1031-1036.	1.0	4
152	Microstructural study of CdS/opal composites. Acta Materialia, 2000, 48, 4653-4657.	7.9	4
153	Blocking of grain reorientation in self-doped alumina materials. Scripta Materialia, 2011, 64, 517-520.	5.2	4
154	Sintering of mullite–β-eucryptite ceramics with very low thermal expansion. International Journal of Materials Research, 2012, 103, 416-421.	0.3	4
155	Formation of Structure in Hard-Alloy Coatings from Powders Under Passage of a Powerful Pulse of Electric Current. Metal Science and Heat Treatment, 2016, 57, 596-602.	0.6	4
156	Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content. Materials, 2017, 10, 167.	2.9	4
157	Atomic Force Microscopy Study of the Surface Degradation Mechanisms of Zirconia Based Ceramics. Ceramic Engineering and Science Proceedings, 0, , 289-294.	0.1	4
158	SÃntesis coloidal de materiales nanoestructurados de Al-ZrAl ₃ : Propiedades mecánicas mediante el ensayo miniatura de punzonado. Revista De Metalurgia, 2009, 45, 256-266.	0.5	4
159	Improvement of CNFs/SiC nanocomposite properties obtained from different routes and consolidated by pulsed electric-current pressure sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 414-419.	5.6	3
160	Influence of roughness on initial in vitro response of cells to Al2O3/Ce-TZP nanocomposite. Journal of Asian Ceramic Societies, 2021, 9, 131-141.	2.3	3
161	Fatigue behaviour of mullite studied by the indentation flexure method. Journal of the European Ceramic Society, 2001, 21, 53-61.	5.7	2
162	Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites. Materials Research Express, 2015, 2, 055003.	1.6	2

RamÃ³N TORRECILLAS

#	Article	IF	CITATIONS
163	Modeling of hybrid method as combined spark plasma sintering and hot pressing physical processes. Mechanics and Industry, 2015, 16, 712.	1.3	2
164	Prevention of Periodontitis by the Addition of a Bactericidal Particulate Glass/Glass-Ceramic to a Dental Resin: A Pilot Study in Dogs. Coatings, 2018, 8, 259.	2.6	2
165	Development of a novel 3D glass-ceramic scaffold for endometrial cell in vitro culture. Ceramics International, 2018, 44, 14920-14924.	4.8	2
166	High Temperature Anelastic Relaxation of Dense Zircon Bodies. Materials Science Forum, 1993, 119-121, 347-352.	0.3	1
167	Investigation of barrier layers on ceramics for silicon thin film solar cells. , 0, , .		1
168	Metakaolin–nanosilver as biocide mullite precursor. International Journal of Materials Research, 2012, 103, 412-415.	0.3	1
169	Cutting tools: finite element modeling of spark plasma sintering to improve their quality. Mechanics and Industry, 2015, 16, 713.	1.3	1
170	Near-Net Shapes Al2O3–SiCw Ceramic Nanocomposites Produced by Hybrid Spark Plasma Sintering. , 2018, , 397-404.		1
171	Propiedades mecánicas y tribológicas de materiales nanoestructurados de carburo de silicio/nanofibras de carbono. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 109-116.	1.9	1
172	Interfacial reactions in zircon-high alumina cement composites. Acta Materialia, 1998, 46, 2415-2422.	7.9	0
173	Zirconia Reinforced Alumina Composites Prepared from Powder Alcoxide Mixtures: Stable Grain Size after Superplastic Stationary Creep. Key Engineering Materials, 2001, 206-213, 1001-1004.	0.4	0
174	Spark plasma sintering of self-doped alumina powders. International Journal of Materials Research, 2010, 101, 106-111.	0.3	0
175	SEM-based system for 100nm x-ray tomography for the analysis of porous silicon. , 2014, , .		0
176	Adding Two Antimicrobial Glasses to an Endodontic Sealer to Prevent Bacterial Root Canal Reinfection: An In Vivo Pilot Study in Dogs. Antibiotics, 2021, 10, 1183.	3.7	0
177	Sinterización reactiva de Hexaluminato de Calcio mediante "Spark Plasma Sintering― Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 217-221.	1.9	0
178	Reactive Coatings on Ceramic Substrates. , 1998, , 447-461.		0
179	High-Temperature Anelastic Relaxation of Dense Zircon Bodies. , 0, , 421-421-10.		0