Christopher M Wallis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Genome Resource of a Grapevine Strain of <i>Trichoderma harzianum</i> , a Potential Biological Control Agent for Fungal Canker Diseases. PhytoFrontiers, 2022, 2, 143-146.	0.8	3
2	Insights regarding resistance of â€~Nemaguard' rootstock to the bacterium Xylella fastidiosa. Plant Disease, 2022, , .	0.7	1
3	Characterization of grapevine fungal canker pathogens Fatty Acid Methyl Ester (FAME) profiles. Mycologia, 2022, 114, 203-213.	0.8	2
4	A comprehensive review of zebra chip disease in potato and its management through breeding for resistance/tolerance to â€~ <i>Candidatus</i> Liberibacter solanacearum' and its insect vector. Pest Management Science, 2022, 78, 3731-3745.	1.7	9
5	Amino acid, sugar, phenolic, and terpenoid profiles are capable of distinguishing Citrus tristeza virus infection status in citrus cultivars: Grapefruit, lemon, mandarin, and sweet orange. PLoS ONE, 2022, 17, e0268255.	1.1	2
6	Potential effects of Grapevine leafroll-associated virus 3 (genus Ampelovirus; family Closteroviridae) or Grapevine red blotch virus (genus Grablovirus; family Geminiviridae) infection on foliar phenolic and amino acid levels. BMC Research Notes, 2022, 15, .	0.6	1
7	Microplate bioassay to examine the effects of grapevine-isolated stilbenoids on survival of root knot nematodes. BMC Research Notes, 2022, 15, .	0.6	1
8	A comparison of the metabolomic response of grapevine to infection with ascomycete wood-infecting fungi. Physiological and Molecular Plant Pathology, 2021, 113, 101596.	1.3	6
9	Nutritional niche overlap analysis as a method to identify potential biocontrol fungi against trunk pathogens. BioControl, 2021, 66, 559-571.	0.9	12
10	Plant defense against a pathogen drives nonlinear transmission dynamics through both vector preference and acquisition. Ecosphere, 2021, 12, e03505.	1.0	1
11	Impact of phenolic compounds on progression of Xylella fastidiosa infections in susceptible and PdR1-locus containing resistant grapevines. PLoS ONE, 2020, 15, e0237545.	1.1	2
12	Grapevine (Vitis spp.) rootstock stilbenoid associations with host resistance to and induction by root knot nematodes, Meloidogyne incognita. BMC Research Notes, 2020, 13, 360.	0.6	8
13	Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS ONE, 2020, 15, e0240101.	1.1	6
14	Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Frontiers in Plant Science, 2020, 11, 580753.	1.7	84
15	Concentrations of sunflower phenolics appear insufficient to explain resistance to floret- and seed-feeding caterpillars. Arthropod-Plant Interactions, 2019, 13, 915-921.	0.5	3
16	Proteome and metabolome analyses reveal differential responses in tomato -Verticillium dahliae-interactions. Journal of Proteomics, 2019, 207, 103449.	1.2	51
17	NMR solution structures and MD-simulation of procyanidin B1, B2, and C1. Arkivoc, 2019, 2018, 279-301.	0.3	2
18	Dust Interferes with Pollen–Stigma Interaction and Fruit Set in Pistachio Pistacia vera cv. Kerman. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1967-1971.	0.5	7

#	Article	IF	CITATIONS
19	Examining the Potential Role of Foliar Chemistry in Imparting Potato Germplasm Tolerance to Potato Psyllid, Green Peach Aphid, and Zebra Chip Disease. Journal of Economic Entomology, 2018, 111, 327-336.	0.8	7
20	Effects of Energy Reserves and Diet on Glassy-Winged Sharpshooter Egg Maturation. Journal of Economic Entomology, 2018, 111, 159-169.	0.8	6
21	Population diversity of <scp><i>Diaphorina citri</i></scp> (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences. Pest Management Science, 2018, 74, 2569-2577.	1.7	10
22	Fruit quality of pomegranate grown in arid environment and irrigated with saline water. Sustainable Water Resources Management, 2018, 4, 951-964.	1.0	4
23	Postharvest Development of â€~ <i>Candidatus</i> Liberibacter solanacearum' in Late-Season Infected Potato Tubers under Commercial Storage Conditions. Plant Disease, 2018, 102, 561-568.	0.7	11
24	Effects of Holding Temperatures on the Development of Zebra Chip Symptoms, †Candidatus Liberibacter Solanacearum' Titers, and Phenolic Levels in †Red La Soda' and †Russet Norkotah' Tubers. Americ Journal of Potato Research, 2017, 94, 334-341.	an0.5	5
25	Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants. Environmental Entomology, 2017, 46, 299-310.	0.7	8
26	Characterization of the Tolerance against Zebra Chip Disease in Tubers of Advanced Potato Lines from Mexico. American Journal of Potato Research, 2017, 94, 342-356.	0.5	15
27	Analyses of Mitogenome Sequences Revealed that Asian Citrus Psyllids (Diaphorina citri) from California Were Related to Those from Florida. Scientific Reports, 2017, 7, 10154.	1.6	13
28	Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins. Journal of Economic Entomology, 2017, 110, 2068-2075.	0.8	17
29	Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves. Frontiers in Plant Science, 2017, 8, 1117.	1.7	37
30	Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. PLoS ONE, 2017, 12, e0183283.	1.1	17
31	Effects of Grapevine red blotch-associated virus (GRBaV) infection on foliar metabolism of grapevines. Canadian Journal of Plant Pathology, 2016, 38, 358-366.	0.8	31
32	Variations in Zebra Chip Disease Expression and Tuber Biochemistry in Response to Vector Density. Phytopathology, 2016, 106, 854-860.	1.1	4
33	The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species. PLoS ONE, 2016, 11, e0155318.	1.1	7
34	â€~ <i>Candidatus</i> Liberibacter solanacearum' Titers in and Infection Effects on Potato Tuber Chemistry of Promising Germplasm Exhibiting Tolerance to Zebra Chip Disease. Phytopathology, 2015, 105, 1573-1584.	1.1	15
35	Effects of Potato-Psyllid-Vectored â€~ <i>Candidatus</i> Liberibacter solanacearum' Infection on Potato Leaf and Stem Physiology. Phytopathology, 2015, 105, 189-198.	1.1	27
36	De Novo Genome Sequence of " Candidatus Liberibacter solanacearum―from a Single Potato Psyllid in California. Genome Announcements, 2015, 3, .	0.8	9

CHRISTOPHER M WALLIS

#	Article	IF	CITATIONS
37	Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by <i>Magnaporthe oryzae</i> . Phytopathology, 2015, 105, 748-757.	1.1	95
38	Indirect Effects of One Plant Pathogen on the Transmission of a Second Pathogen and the Behavior of its Potato Psyllid Vector. Environmental Entomology, 2015, 44, 1065-1075.	0.7	9
39	Effects of Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Feeding, Size, and Lipid Content on Egg Maturation. Journal of Economic Entomology, 2015, 108, 1014-1024.	0.8	13
40	Whole-Genome Sequence of " <i>Candidatus</i> Liberibacter solanacearum―Strain R1 from California. Genome Announcements, 2014, 2, .	0.8	9
41	Similarities and Differences in Physiological Responses to â€~ <i>Candidatus</i> Liberibacter solanacearum' Infection Among Different Potato Cultivars. Phytopathology, 2014, 104, 126-133.	1.1	31
42	Tri-trophic movement of carotenoid pigments from host plant to the parasitoid of a caterpillar. Journal of Insect Physiology, 2014, 61, 58-65.	0.9	2
43	Attraction of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae) to synthetic formulation of a (E)-β-ocimene and (E,E)-α-farnesene mixture. Biological Control, 2014, 77, 23-28.	1.4	16
44	Structure assignment and H/D-exchange behavior of several glycosylated polyphenols. Arkivoc, 2014, 2014, 94-122.	0.3	1
45	Effects of cultivar, phenology, and Xylella fastidiosa infection on grapevine xylem sap and tissue phenolic content. Physiological and Molecular Plant Pathology, 2013, 84, 28-35.	1.3	20
46	Scanning electron microscopy andin vitrocultivation of endophytic bacteria from potato tubers afflicted with zebra chip disease. Canadian Journal of Plant Pathology, 2013, 35, 192-199.	0.8	7
47	Zebra Chip Disease and Potato Biochemistry: Tuber Physiological Changes in Response to â€~ <i>Candidatus</i> Liberibacter solanacearum' Infection Over Time. Phytopathology, 2013, 103, 419-426.	1.1	53
48	Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease. Frontiers in Plant Science, 2013, 4, 502.	1.7	52
49	Grapevine Phenolic Compounds in Xylem Sap and Tissues Are Significantly Altered During Infection by <i>Xylella fastidiosa</i> . Phytopathology, 2012, 102, 816-826.	1.1	66
50	Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiological and Molecular Plant Pathology, 2012, 78, 66-72.	1.3	58
51	Differential effects of nutrient availability on the secondary metabolism of Austrian pine (<i>Pinus) Tj ETQq1 1 0.</i>	784314 rg 0.5	;BT_/Overlo <mark>ck</mark>
52	Ecosystem, Location, and Climate Effects on Foliar Secondary Metabolites of Lodgepole Pine Populations from Central British Columbia. Journal of Chemical Ecology, 2011, 37, 607-621.	0.9	22
53	Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Canadian Journal of Forest Research, 2010, 40, 2333-2344.	0.8	38
54	Effects of Fertilization and Fungal and Insect Attack on Systemic Protein Defenses of Austrian Pine. Journal of Chemical Ecology, 2008, 34, 1392-1400.	0.9	16

#	Article	IF	CITATIONS
55	Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytologist, 2008, 177, 767-778.	3.5	106
56	Adaptation of plum pox virus to a herbaceous host (Pisum sativum) following serial passages. Journal of General Virology, 2007, 88, 2839-2845.	1.3	68
57	Cross-induction of systemic induced resistance between an insect and a fungal pathogen in Austrian pine over a fertility gradient. Oecologia, 2007, 153, 365-374.	0.9	40
58	Aphid (Hemiptera: Aphididae) Species Composition and Potential Aphid Vectors of Plum Pox Virus in Pennsylvania Peach Orchards. Journal of Economic Entomology, 2005, 98, 1441-1450.	0.8	15