Shaban Demirel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027047/publications.pdf Version: 2024-02-01

SHARAN DEMIDEL

#	Article	lF	CITATIONS
1	Assessment of the Reliability of Standard Automated Perimetry in Regions of Glaucomatous Damage. Ophthalmology, 2014, 121, 1359-1369.	2.5	159
2	Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population. Ophthalmology, 2015, 122, 1786-1794.	2.5	141
3	A Method to Estimate the Amount of Neuroretinal Rim Tissue in Glaucoma: Comparison With Current Methods for Measuring Rim Area. American Journal of Ophthalmology, 2014, 157, 540-549.e2.	1.7	116
4	IOP-Induced Lamina Cribrosa Deformation and Scleral Canal Expansion: Independent or Related?. , 2011, 52, 9023.		114
5	Anterior Lamina Cribrosa Surface Depth, Age, and Visual Field Sensitivity in the Portland Progression Project. , 2014, 55, 1531.		78
6	Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma. American Journal of Ophthalmology, 2017, 174, 1-8.	1.7	69
7	Comparing Multifocal VEP and Standard Automated Perimetry in High-Risk Ocular Hypertension and Early Claucoma. , 2007, 48, 1173.		68
8	Factors Predicting the Rate of Functional Progression in Early and Suspected Glaucoma. , 2012, 53, 3598.		65
9	Structural Measurements for Monitoring Change in Glaucoma: Comparing Retinal Nerve Fiber Layer Thickness With Minimum Rim Width and Area. , 2015, 56, 6886.		65
10	Assessment of False Positives with the Humphrey Field Analyzer II Perimeter with the SITA Algorithm. , 2006, 47, 4632.		61
11	Incidence and prevalence of short wavelength automated perimetry deficits in ocular hypertensive patients. American Journal of Ophthalmology, 2001, 131, 709-715.	1.7	59
12	The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma. , 2016, 57, 288.		59
13	Anatomic vs. Acquired Image Frame Discordance in Spectral Domain Optical Coherence Tomography Minimum Rim Measurements. PLoS ONE, 2014, 9, e92225.	1.1	56
14	Normative ranges and specificity of the multifocal VEP. Documenta Ophthalmologica, 2004, 109, 87-100.	1.0	55
15	Assessment of Patient Opinions of Different Clinical Tests Used in the Management of Glaucoma. Ophthalmology, 2008, 115, 2127-2131.	2.5	55
16	Eye Movements During Perimetry and the Effect that Fixational Instability Has on Perimetric Outcomes. Journal of Glaucoma, 1994, 3, 28???35.	0.8	51
17	Transcranial magnetic stimulation. NeuroReport, 1996, 7, 1740-1744.	0.6	49
18	Asymmetries and Visual Field Summaries as Predictors of Glaucoma in the Ocular Hypertension Treatment Study. , 2006, 47, 3896.		46

SHABAN DEMIREL

#	Article	IF	CITATIONS
19	Differential Effects of Aging in the Macular Retinal Layers, Neuroretinal Rim, and Peripapillary Retinal Nerve Fiber Layer. Ophthalmology, 2020, 127, 177-185.	2.5	45
20	Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma. , 2016, 57, 1221.		44
21	Nonlinear, Multilevel Mixed-Effects Approach for Modeling Longitudinal Standard Automated Perimetry Data in Glaucoma. , 2013, 54, 5505.		39
22	What limits detection and resolution of short-wavelength sinusoidal gratings across the retina?. Vision Research, 2002, 42, 981-990.	0.7	38
23	The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry. Translational Vision Science and Technology, 2015, 4, 10.	1.1	38
24	Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. , 2018, 59, 2357.		33
25	Detection of Functional Change Using Cluster Trend Analysis in Glaucoma. , 2017, 58, BIO180.		32
26	Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement. , 2018, 59, 2818.		32
27	Rate of Visual Field Progression in Eyes With Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study. JAMA Ophthalmology, 2012, 130, 1541.	2.6	31
28	Series Length Used during Trend Analysis Affects Sensitivity to Changes in Progression Rate in the Ocular Hypertension Treatment Study. , 2013, 54, 1252.		30
29	Perceived Spatial Frequency of Sinusoidal Gratings. Optometry and Vision Science, 2008, 85, 318-329.	0.6	27
30	Signal-to-Noise Ratios for Structural and Functional Tests in Glaucoma. Translational Vision Science and Technology, 2013, 2, 3.	1.1	27
31	Detecting Change Using Standard Global Perimetric Indices in Glaucoma. American Journal of Ophthalmology, 2017, 176, 148-156.	1.7	26
32	Repeatability of Normal Multifocal VEP: Implications for Detecting Progression. Journal of Glaucoma, 2006, 15, 131-141.	0.8	25
33	Vision-related Quality of Life in Glaucoma Suspect or Early Glaucoma Patients. Journal of Glaucoma, 2016, 25, 629-633.	0.8	25
34	Glaucoma Specialist Optic Disc Margin, Rim Margin, and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes. American Journal of Ophthalmology, 2018, 192, 65-76.	1.7	25
35	Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study. , 2019, 60, 795.		25
36	Peripapillary Scleral Bowing Increases with Age and Is Inversely Associated with Peripapillary Choroidal Thickness in Healthy Eyes. American Journal of Ophthalmology, 2020, 217, 91-103.	1.7	25

SHABAN DEMIREL

#	Article	IF	CITATIONS
37	Features of Optic Disc Progression in Patients With Ocular Hypertension and Early Glaucoma. Journal of Glaucoma, 2013, 22, 343-348.	0.8	23
38	OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes. American Journal of Ophthalmology, 2019, 208, 185-205.	1.7	23
39	The oculomotor gap effect without a foveal fixation point. Vision Research, 1999, 39, 833-841.	0.7	22
40	Perimetric Indices as Predictors of Future Glaucomatous Functional Change. Optometry and Vision Science, 2011, 88, 56-62.	0.6	22
41	The Rate of Visual Field Change in the Ocular Hypertension Treatment Study. , 2012, 53, 224.		22
42	The effect of test variability on the structure–function relationship in early glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 1851-1861.	1.0	22
43	Isolation of Short-wavelength Sensitive Mechanisms in Normal and Glaucomatous Visual Field Regions. Journal of Glaucoma, 2000, 9, 63-73.	0.8	21
44	Assessment of linear-scale indices for perimetry in terms of progression in early glaucoma. Vision Research, 2011, 51, 1801-1810.	0.7	18
45	Localized Changes in Retinal Nerve Fiber Layer Thickness as a Predictor of Localized Functional Change in Glaucoma. American Journal of Ophthalmology, 2016, 170, 75-82.	1.7	18
46	Reducing Variability of Perimetric Global Indices from Eyes with Progressive Glaucoma by Censoring Unreliable Sensitivity Data. Translational Vision Science and Technology, 2017, 6, 11.	1.1	18
47	Short-wavelength acuity: optical factors affecting detection and resolution of blue–yellow sinusoidal gratings in foveal and peripheral vision. Vision Research, 2003, 43, 101-107.	0.7	16
48	Comorbidities confounding the outcomes of surgery for third window syndrome: Outlier analysis. Laryngoscope Investigative Otolaryngology, 2017, 2, 225-253.	0.6	16
49	Predicting Progressive Glaucomatous Optic Neuropathy Using Baseline Standard Automated Perimetry Data. , 2009, 50, 674.		14
50	Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma. Translational Vision Science and Technology, 2015, 4, 8.	1.1	14
51	Peripheral Resolution for Achromatic and SWS Gratings in Early to Moderate Glaucoma and the Implications for Selective Ganglion Cell Density Loss. , 2003, 44, 4780.		12
52	The Effect of Family Presence on Rounding Duration in the PICU. Hospital Pediatrics, 2017, 7, 103-107.	0.6	12
53	Optical Coherence Tomography Segmentation Errors of the Retinal Nerve Fiber Layer Persist Over Time. Journal of Claucoma, 2019, 28, 368-374.	0.8	12
54	Multifocal visual evoked potential responses to pattern-reversal, pattern-onset, pattern-offset, and sparse pulse stimuli. Visual Neuroscience, 2009, 26, 227-235.	0.5	11

SHABAN DEMIREL

#	Article	IF	CITATIONS
55	Detection and resolution of vanishing optotype letters in central and peripheral vision. Vision Research, 2012, 59, 9-16.	0.7	11
56	Variability in shortâ€wavelength automated perimetry among peri―or postmenopausal women: a dependence on phytoâ€oestrogen consumption?. Acta Ophthalmologica, 2011, 89, e217-24.	0.6	10
57	Optical Coherence Tomography Structural Abnormality Detection in Glaucoma Using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria. American Journal of Ophthalmology, 2020, 213, 203-216.	1.7	9
58	Association of Optic Nerve Head Prelaminar Schisis With Glaucoma. American Journal of Ophthalmology, 2021, 223, 246-258.	1.7	9
59	Glaucoma Specialist Detection of Optical Coherence Tomography Suspicious Rim Tissue in Glaucoma and Glaucoma Suspect Eyes. American Journal of Ophthalmology, 2019, 199, 28-43.	1.7	8
60	Orbital Volume Correction in Orbital Floor Fractures: A Comparison of Transorbital and Transantral Techniques. Journal of Oral and Maxillofacial Surgery, 2020, 78, 430.e1-430.e7.	0.5	8
61	Cup Size Predicts Subsequent Functional Change in Early Glaucoma. Optometry and Vision Science, 2011, 88, 1470-1476.	0.6	5
62	Early Detection of Glaucomatous Visual Field Loss: Why, What, Where, and How. Ophthalmology Clinics of North America, 2005, 18, 365-373.	1.8	4
63	Effect of Recording Duration on the Diagnostic Performance of Multifocal Visual-evoked Potentials in High-risk Ocular Hypertension and Early Glaucoma. Journal of Glaucoma, 2008, 17, 175-182.	0.8	4
64	Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 797-803.	1.0	4
65	Correlating Perimetric Indices with Three Nerve Fiber Layer Thickness Measures. Optometry and Vision Science, 2013, 90, 1353-1360.	0.6	3
66	Reducing Variability in Visual Field Assessment for Glaucoma Through Filtering That Combines Structural and Functional Information. , 2014, 55, 4593.		3
67	Roadmap to Wellness: Exploring Live Customized Music at the Bedside for Hospitalized Children. Frontiers in Oncology, 2018, 8, 21.	1.3	3
68	Reliability of the Dexcom G6 Continuous Glucose Monitor During Hyperbaric Oxygen Exposure. Diabetes Technology and Therapeutics, 2020, 22, 360-366.	2.4	2
69	Frailty modeling via the empirical Bayes–Hastings sampler. Computational Statistics and Data Analysis, 2012, 56, 1303-1318.	0.7	1
70	PREDICTING GLAUCOMA PROGRESSION USING DECISION TREES FOR CLUSTERED DATA BY GOODNESS OF SPLIT. International Journal of Semantic Computing, 2013, 07, 157-172.	0.4	1
71	Field of Vision: A Manual and Atlas of Perimetry,. Optometry and Vision Science, 2004, 81, 164.	0.6	0
72	Glaucoma. Pathophysiology of the Eye, Volume 4. Janos Feher. Quarterly Review of Biology, 2000, 75, 221-221.	0.0	0

#	Article	IF	CITATIONS
73	The ability of frequency doubling technology (FDT) perimetry to predict the onset of glaucomatous visual field loss for standard automated perimetry (SAP). Journal of Vision, 2002, 2, 100-100.	0.1	0
74	A comparison of visual field indices for standard FDT and a spatially finer testing pattern. Journal of Vision, 2002, 2, 96-96.	0.1	0
75	Psychophysiology of Glaucoma. , 2008, , 527-548.		0