

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9026913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quasi-CW Lasing from Directly Patterned and Encapsulated Perovskite Cavity at 260 K. ACS Photonics, 2022, 9, 1984-1991.	6.6	12
2	Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device. Advanced Functional Materials, 2021, 31, 2102006.	14.9	17
3	Pure Blue Electroluminescence: Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device (Adv. Funct. Mater. 31/2021). Advanced Functional Materials, 2021, 31, 2170228.	14.9	0
4	Leveraging a Stable Perovskite Composite to Satisfy Blue Electroluminescence Standards. , 2021, 3, 1357-1362.		6
5	High-speed nanoLEDs for chip-scale communication. Nano Communication Networks, 2021, 30, 100376.	2.9	4
6	Surface Energy-Driven Preferential Grain Growth of Metal Halide Perovskites: Effects of Nanoimprint Lithography Beyond Direct Patterning. ACS Applied Materials & Interfaces, 2021, 13, 5368-5378.	8.0	26
7	Bright Single-Layer Perovskite Host–Ionic Guest Light-Emitting Electrochemical Cells. Chemistry of Materials, 2021, 33, 1201-1212.	6.7	15
8	Topological and hyperbolic dielectric materials from chirality-induced charge-parity symmetry. Physical Review A, 2021, 104, .	2.5	7
9	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	7.3	28
10	Active Perovskite Hyperbolic Metasurface. ACS Photonics, 2020, 7, 1754-1761.	6.6	27
11	Perovskite Lightâ€Emitting Electrochemical Cells: Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070052.	7.3	1
12	Topological Bands and Triply Degenerate Points in Non-Hermitian Hyperbolic Metamaterials. Physical Review Letters, 2020, 124, 073603.	7.8	37
13	Si-compatible CW Perovskite Laser at Room Temperature and Perovskite Gain-assisted Hyperbolic Metamaterials. , 2020, , .		0
14	Real-time dynamic wavelength tuning and intensity modulation of metal-clad nanolasers. Optics Express, 2020, 28, 27346.	3.4	6
15	Bright and Effectual Perovskite Light-Emitting Electrochemical Cells Leveraging Ionic Additives. ACS Energy Letters, 2019, 4, 2922-2928.	17.4	47
16	High-speed on-chip light sources at the nanoscale. Advances in Physics: X, 2019, 4, 1658541.	4.1	4
17	Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 2018, 12, 10968-10976.	14.6	140
18	Effective Modal Volume in Nanoscale Photonic and Plasmonic Near-Infrared Resonant Cavities. Applied Sciences (Switzerland), 2018, 8, 1464.	2.5	2

Qing Gu

#	Article	IF	CITATIONS
19	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	3.3	27
20	Ultrafast shifted-core coaxial nano-emitter. Optics Express, 2018, 26, 15177.	3.4	5
21	Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progress in Quantum Electronics, 2018, 59, 1-18.	7.0	22
22	Lasing action from photonic bound states in continuum. Nature, 2017, 541, 196-199.	27.8	819
23	Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25, A1162.	3.4	35
24	Coupling in a dual metallo-dielectric nanolaser system. Optics Letters, 2017, 42, 4760.	3.3	20
25	Mechanically stable conjugate and suspended lasing membranes of bridged nano-cylinders. Optical Materials Express, 2017, 7, 2980.	3.0	3
26	Dynamic hysteresis in a coherent high-β nanolaser. Optica, 2016, 3, 1260.	9.3	57
27	Amplification and Lasing of Plasmonic Modes. Proceedings of the IEEE, 2016, 104, 2323-2337.	21.3	13
28	Constriction Resistance and Current Crowding in Electrically Pumped Semiconductor Nanolasers with the Presence of Undercut and Sidewall Tilt. IEEE Journal of Quantum Electronics, 2016, 52, 1-7.	1.9	10
29	Effect of Undercut Etch on Performance and Fabrication Robustness of Metal-Clad Semiconductor Nanolasers. IEEE Journal of Quantum Electronics, 2015, 51, 1-9.	1.9	8
30	Temperature effects in metal-clad semiconductor nanolasers. Nanophotonics, 2015, 4, 26-43.	6.0	18
31	Electrically pumped metallo-dielectric pedestal nanolasers with high thermal-conductivity shield. , 2014, , .		0
32	Subwavelength semiconductor lasers for dense chip-scale integration. Advances in Optics and Photonics, 2014, 6, 1.	25.5	25
33	Temperature Dependence of the Spontaneous Emission Factor in Subwavelength Semiconductor Lasers. IEEE Journal of Quantum Electronics, 2014, 50, 175-185.	1.9	32
34	Nanoscale engineering optical nonlinearities and nanolasers. , 2014, , .		0
35	Design of compact IIIV/Si distributed feedback lasers. , 2013, , .		0
36	Electrically pumped metallo-dielectric pedestal nanolasers. , 2013, , .		1

Qing Gu

#	Article	IF	CITATIONS
37	Purcell effect in sub-wavelength semiconductor lasers. Optics Express, 2013, 21, 15603.	3.4	57
38	Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings. Applied Physics Letters, 2013, 103, .	3.3	17
39	Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers. Optics Express, 2011, 19, 21524.	3.4	82
40	Optically Injection-Locked VCSEL as a Duplex Transmitter/Receiver. IEEE Photonics Technology Letters, 2008, 20, 463-465.	2.5	22
41	Optically injection-locked VCSEL for bi-directional optical communication. , 2008, , .		0