
Ana Pineda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9026515/publications.pdf Version: 2024-02-01

ΔΝΙΑ ΡΙΝΕΠΑ

#	Article	IF	CITATIONS
1	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	1.8	7
2	Bidirectional plantâ€mediated interactions between rhizobacteria and shootâ€feeding herbivorous insects: a community ecology perspective. Ecological Entomology, 2021, 46, 1-10.	2.2	19
3	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	4.3	26
4	Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soilâ€borne pathogen. Environmental Microbiology, 2020, 22, 660-676.	3.8	36
5	Conditioning the soil microbiome through plant–soil feedbacks suppresses an aboveground insect pest. New Phytologist, 2020, 226, 595-608.	7.3	67
6	Soil inoculation alters the endosphere microbiome of chrysanthemum roots and leaves. Plant and Soil, 2020, 455, 107-119.	3.7	4
7	Plant responses to butterfly oviposition partly explain preference–performance relationships on different brassicaceous species. Oecologia, 2020, 192, 463-475.	2.0	23
8	Role of Thrips Omnivory and Their Aggregation Pheromone on Multitrophic Interactions Between Sweet Pepper Plants, Aphids, and Hoverflies. Frontiers in Ecology and Evolution, 2019, 6, .	2.2	8
9	Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences. Annals of Botany, 2018, 121, 311-319.	2.9	9
10	Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores. Ecological Studies, 2018, , 319-343.	1.2	18
11	Modulation of plant-mediated interactions between herbivores of different feeding guilds: Effects of parasitism and belowground interactions. Scientific Reports, 2018, 8, 14424.	3.3	13
12	Carry-over effects of soil inoculation on plant growth and health under sequential exposure to soil-borne diseases. Plant and Soil, 2018, 433, 257-270.	3.7	11
13	Synergistic and antagonistic effects of mixing monospecific soils on plant-soil feedbacks. Plant and Soil, 2018, 429, 271-279.	3.7	4
14	Plantâ€mediated species networks: the modulating role of herbivore density. Ecological Entomology, 2017, 42, 449-457.	2.2	20
15	Does drought stress modify the effects of plantâ€growth promoting rhizobacteria on an aboveground chewing herbivore?. Insect Science, 2017, 24, 1034-1044.	3.0	7
16	Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology, 2017, 93, .	2.7	18
17	Olfactory Response of the Predatory Bug Orius laevigatus (Hemiptera:Anthocoridae) to the Aggregation Pheromone of Its Prey, Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology, 2017, 46, 1115-1119.	1.4	18
18	Steering Soil Microbiomes to Suppress Aboveground Insect Pests. Trends in Plant Science, 2017, 22, 770-778.	8.8	193

Ana Pineda

#	Article	IF	CITATIONS
19	Plant–Soil Feedback Effects on Growth, Defense and Susceptibility to a Soil-Borne Disease in a Cut Flower Crop: Species and Functional Group Effects. Frontiers in Plant Science, 2017, 8, 2127.	3.6	38
20	Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates. Environmental and Experimental Botany, 2016, 123, 88-97.	4.2	31
21	Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of Chemical Ecology, 2016, 42, 1212-1225.	1.8	118
22	Editorial: Above-belowground interactions involving plants, microbes and insects. Frontiers in Plant Science, 2015, 6, 318.	3.6	44
23	Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. Frontiers in Plant Science, 2015, 6, 794.	3.6	20
24	Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia, 2015, 178, 1169-1180.	2.0	83
25	Variation in plantâ€mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biology, 2015, 17, 474-483.	3.8	55
26	Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141254.	2.6	52
27	Feeding preferences of the aphidophagous hoverfly Sphaerophoria rueppellii affect the performance of its offspring. BioControl, 2014, 59, 427-435.	2.0	29
28	Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecology, 2013, 27, 574-586.	3.6	171
29	Nonâ€pathogenic rhizobacteria interfere with the attraction of parasitoids to aphidâ€induced plant volatiles via jasmonic acid signalling. Plant, Cell and Environment, 2013, 36, 393-404.	5.7	110
30	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	3.6	110
31	Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium <i>Pseudomonas fluorescens</i> SS101. Plant Physiology, 2012, 160, 2173-2188.	4.8	254
32	Prey availability and abiotic requirements of immature stages of the aphid predator Sphaerophoria rueppellii. Biological Control, 2012, 63, 17-24.	3.0	30
33	Neonates know better than their mothers when selecting a host plant. Oikos, 2012, 121, 1923-1934.	2.7	46
34	Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biology, 2012, 14, 83-90.	3.8	91
35	Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507-514.	8.8	528

 $_{36}$ Evaluation of several strategies to increase the residence time of <i>Episyrphus balteatus </i>(Diptera,) Tj ETQq0 0.0 rgBT /Overlock 10 rgBT /Over

Ana Pineda

#	Article	IF	CITATIONS
37	Use of selected flowering plants in greenhouses to enhance aphidophagous hoverfly populations (Diptera: Syrphidae). Annales De La Societe Entomologique De France, 2008, 44, 487-492.	0.9	35
38	Seasonal Abundance of Aphidophagous Hoverflies (Diptera: Syrphidae) and Their Population Levels In and Outside Mediterranean Sweet Pepper Greenhouses. Annals of the Entomological Society of America, 2008, 101, 384-391.	2.5	30
39	Introducing barley as aphid reservoir in sweet-pepper greenhouses: Effects on native and released hoverflies (Diptera: Syrphidae). European Journal of Entomology, 2008, 105, 531-535.	1.2	19
40	Oviposition avoidance of parasitized aphid colonies by the syrphid predator Episyrphus balteatus mediated by different cues. Biological Control, 2007, 42, 274-280.	3.0	31