David E James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9026335/publications.pdf Version: 2024-02-01

DAVID F LAMES

#	Article	IF	CITATIONS
1	Regulated transport of the glucose transporter GLUT4. Nature Reviews Molecular Cell Biology, 2002, 3, 267-277.	16.1	1,008
2	Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature, 1988, 333, 183-185.	13.7	613
3	Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends in Endocrinology and Metabolism, 2015, 26, 676-687.	3.1	402
4	Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism, 2013, 17, 1009-1020.	7.2	352
5	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
6	Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking. Journal of Biological Chemistry, 2005, 280, 37803-37813.	1.6	330
7	IRS1-Independent Defects Define Major Nodes of Insulin Resistance. Cell Metabolism, 2008, 7, 421-433.	7.2	266
8	High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nature Protocols, 2018, 13, 1897-1916.	5.5	238
9	GLUT4 exocytosis. Journal of Cell Science, 2011, 124, 4147-4159.	1.2	233
10	A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Reports, 2015, 12, 937-943.	2.9	232
11	Thirty sweet years of GLUT4. Journal of Biological Chemistry, 2019, 294, 11369-11381.	1.6	223
12	The aetiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology, 2021, 22, 751-771.	16.1	221
13	Illuminating the dark phosphoproteome. Science Signaling, 2019, 12, .	1.6	219
14	Insulin Increases Cell Surface GLUT4 Levels by Dose Dependently Discharging GLUT4 into a Cell Surface Recycling Pathway. Molecular and Cellular Biology, 2004, 24, 6456-6466.	1.1	203
15	GLUT4 Recycles via atrans-Golgi Network (TGN) Subdomain Enriched in Syntaxins 6 and 16 But Not TGN38: Involvement of an Acidic Targeting Motif. Molecular Biology of the Cell, 2003, 14, 973-986.	0.9	192
16	Characterization of Munc-18c and Syntaxin-4 in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1997, 272, 6179-6186.	1.6	188
17	A Role for 14-3-3 in Insulin-stimulated GLUT4 Translocation through Its Interaction with the RabGAP AS160. Journal of Biological Chemistry, 2006, 281, 29174-29180.	1.6	185
18	Dissecting Multiple Steps of GLUT4 Trafficking and Identifying the Sites of Insulin Action. Cell Metabolism, 2007, 5, 47-57.	7.2	183

David E James

#	Article	IF	CITATIONS
19	Rapid Activation of Akt2 Is Sufficient to Stimulate GLUT4 Translocation in 3T3-L1 Adipocytes. Cell Metabolism, 2008, 7, 348-356.	7.2	159
20	Pigment Epithelium-Derived Factor Contributes to Insulin Resistance in Obesity. Cell Metabolism, 2009, 10, 40-47.	7.2	159
21	The Role of Phosphoinositide 3-Kinase C2α in Insulin Signaling. Journal of Biological Chemistry, 2007, 282, 28226-28236.	1.6	136
22	Vesicle-associated Membrane Protein 2 Plays a Specific Role in the Insulin-dependent Trafficking of the Facilitative Glucose Transporter GLUT4 in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 1444-1452.	1.6	132
23	Mapping Insulin/GLUT4 Circuitry. Traffic, 2011, 12, 672-681.	1.3	128
24	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.	1.6	110
25	Syndet, an Adipocyte Target SNARE Involved in the Insulin-induced Translocation of GLUT4 to the Cell Surface. Journal of Biological Chemistry, 1998, 273, 18784-18792.	1.6	100
26	Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Molecular Metabolism, 2014, 3, 465-473.	3.0	96
27	CaMKII-Mediated Phosphorylation of the Myosin Motor Myo1c Is Required for Insulin-Stimulated GLUT4 Translocation in Adipocytes. Cell Metabolism, 2008, 8, 384-398.	7.2	95
28	Akt Activation Is Required at a Late Stage of Insulin-Induced GLUT4 Translocation to the Plasma Membrane. Molecular Endocrinology, 2005, 19, 1067-1077.	3.7	93
29	Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 2019, 60, 1720-1732.	2.0	91
30	Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications, 2019, 10, 5486.	5.8	89
31	mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.	2.9	88
32	Selective Insulin Resistance in Adipocytes. Journal of Biological Chemistry, 2015, 290, 11337-11348.	1.6	85
33	The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochemical Journal, 2000, 350, 99-107.	1.7	84
34	Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. Diabetologia, 2013, 56, 875-885.	2.9	81
35	The CLUT4 Code. Molecular Endocrinology, 2008, 22, 226-233.	3.7	79
36	Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment. Diabetologia, 2008, 51, 900-902.	2.9	72

David E James

#	Article	IF	CITATIONS
37	Identification of a Distal GLUT4 Trafficking Event Controlled by Actin Polymerization. Molecular Biology of the Cell, 2009, 20, 3918-3929.	0.9	69
38	Variations in the requirement for v-SNAREs in GLUT4 trafficking in adipocytes. Journal of Cell Science, 2009, 122, 3472-3480.	1.2	69
39	Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3271-80.	3.3	69
40	Insulin Recruits GLUT4 from Specialized VAMP2-carrying Vesicles as well as from the Dynamic Endosomal/Trans-Golgi Network in Rat Adipocytes Molecular Biology of the Cell, 2000, 11, 4079-4091.	0.9	68
41	Kinetic Evidence for Unique Regulation of GLUT4 Trafficking by Insulin and AMP-activated Protein Kinase Activators in L6 Myotubes. Journal of Biological Chemistry, 2010, 285, 1653-1660.	1.6	67
42	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	1.6	65
43	An Actin Filament Population Defined by the Tropomyosin Tpm3.1 Regulates Glucose Uptake. Traffic, 2015, 16, 691-711.	1.3	61
44	Regulation of Glucose Transporter 4 Translocation by the Rab Guanosine Triphosphatase-Activating Protein AS160/TBC1D4: Role of Phosphorylation and Membrane Association. Molecular Endocrinology, 2008, 22, 2703-2715.	3.7	56
45	Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Reports, 2017, 21, 3536-3547.	2.9	55
46	Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Science Signaling, 2015, 8, rs6.	1.6	53
47	Next-generation Akt inhibitors provide greater specificity: effects on glucose metabolism in adipocytes. Biochemical Journal, 2011, 435, 539-544.	1.7	50
48	Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes. Journal of Biological Chemistry, 2015, 290, 23528-23542.	1.6	50
49	Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 25834-25846.	1.6	50
50	PhosR enables processing and functional analysis of phosphoproteomic data. Cell Reports, 2021, 34, 108771.	2.9	48
51	Snapin Interacts with the Exo70 Subunit of the Exocyst and Modulates GLUT4 Trafficking. Journal of Biological Chemistry, 2008, 283, 324-331.	1.6	46
52	Cluster Analysis of Insulin Action in Adipocytes Reveals a Key Role for Akt at the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 2245-2257.	1.6	45
53	Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40, 576-584.	9.4	44
54	<pre><scp>TBC1D13</scp> is a <scp>RAB35</scp> Specific <scp>GAP</scp> that Plays an Important Role in <scp>GLUT4</scp> Trafficking in Adipocytes. Traffic, 2012, 13, 1429-1441.</pre>	1.3	42

DAVID E JAMES

#	Article	IF	CITATIONS
55	Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3. Molecular and Cellular Proteomics, 2010, 9, 682-694.	2.5	37
56	Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics, 2016, 32, 252-259.	1.8	34
57	Serine 474 phosphorylation is essential for maximal Akt2 kinase activity in adipocytes. Journal of Biological Chemistry, 2019, 294, 16729-16739.	1.6	32
58	Growth Factor-Dependent and -Independent Activation of mTORC2. Trends in Endocrinology and Metabolism, 2020, 31, 13-24.	3.1	31
59	Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry, 2020, 295, 13250-13266.	1.6	31
60	DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia, 2014, 57, 2173-2182.	2.9	30
61	Quantitative Proteomic Analysis of the Adipocyte Plasma Membrane. Journal of Proteome Research, 2011, 10, 4970-4982.	1.8	29
62	Direction pathway analysis of large-scale proteomics data reveals novel features of the insulin action pathway. Bioinformatics, 2014, 30, 808-814.	1.8	29
63	Novel Systems for Dynamically Assessing Insulin Action in Live Cells Reveals Heterogeneity in the Insulin Response. Traffic, 2013, 14, 259-273.	1.3	27
64	KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis. Proteomics, 2016, 16, 1868-1871.	1.3	27
65	GLUT4 trafficking in insulin-sensitive cells. Cell Biochemistry and Biophysics, 1999, 30, 89-113.	0.9	26
66	RagC phosphorylation autoregulates <scp>mTOR</scp> complex 1. EMBO Journal, 2019, 38, .	3.5	26
67	Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin. IScience, 2020, 23, 100855.	1.9	24
68	ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Molecular Metabolism, 2019, 25, 83-94.	3.0	22
69	Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. ELife, 2021, 10, .	2.8	21
70	PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications. BMC Genomics, 2015, 16, 617.	1.2	20
71	SnapShot: Insulin/IGF1 Signaling. Cell, 2015, 161, 948-948.e1.	13.5	19
72	Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. IScience, 2021, 24, 102118.	1.9	19

DAVID E JAMES

#	Article	IF	CITATIONS
73	Kinetic Trans-omic Analysis Reveals Key Regulatory Mechanisms for Insulin-Regulated Glucose Metabolism in Adipocytes. IScience, 2020, 23, 101479.	1.9	17
74	The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.	1.3	16
75	Uncaging Akt. Science Signaling, 2012, 5, pe20.	1.6	15
76	Hyperactivation of the Insulin Signaling Pathway Improves Intracellular Proteostasis by Coordinately Up-regulating the Proteostatic Machinery in Adipocytes. Journal of Biological Chemistry, 2016, 291, 25629-25640.	1.6	15
77	Improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. Journal of Cell Science, 2017, 130, 2757-2766.	1.2	15
78	MUNC-ing around with insulin action. Journal of Clinical Investigation, 2005, 115, 219-221.	3.9	15
79	Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1. PLoS Computational Biology, 2021, 17, e1008513.	1.5	14
80	Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies. PLoS ONE, 2016, 11, e0157763.	1.1	14
81	Structural insights into Ras regulation by SIN1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119990119.	3.3	14
82	Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling. Molecular Metabolism, 2019, 25, 107-118.	3.0	11
83	Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochemical Journal, 2022, 479, 1237-1256.	1.7	11
84	Glucose Transport: Methods for Interrogating GLUT4 Trafficking in Adipocytes. Methods in Molecular Biology, 2018, 1713, 193-215.	0.4	6
85	Towards fully automated identification of vesicle-membrane fusion events in TIRF microscopy. International Journal of Computer Aided Engineering and Technology, 2009, 1, 502.	0.1	5
86	Membrane Topology of Trafficking Regulator of GLUT4 1 (TRARG1). Biochemistry, 2018, 57, 3606-3615.	1.2	4
87	Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation?. Diabetology International, 2010, 1, 26-34.	0.7	1