Vo Van Hoang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025841/publications.pdf

Version: 2024-02-01

471509 552781 1,007 79 17 26 citations h-index g-index papers 79 79 79 729 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic structure and rippling of amorphous two-dimensional SiC nanoribbons – MD simulations. Computational Materials Science, 2022, 203, 111123.	3.0	6
2	Influences of cooling rate on formation of amorphous germanene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114492.	2.7	2
3	Modeling glassy SiC nanoribbon by rapidly cooling from the liquid: An affirmation of appropriate potentials. Physica B: Condensed Matter, 2021, 608, 412746.	2.7	7
4	Melting of two-dimensional perfect crystalline and polycrystalline germanene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114021.	2.7	7
5	Two-dimensional FeC compound with square and triangle lattice structure – Molecular dynamics and DFT study. Computational Materials Science, 2020, 181, 109730.	3.0	4
6	Amorphous and â€~crystalline' penta-silicene. Philosophical Magazine, 2020, 100, 1962-1981.	1.6	5
7	Compression-induced square-triangle solid-solid phase transition in 2D simple monatomic system. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 35-42.	2.7	3
8	Heating-induced phase transitions in confined amorphous tetra-silicene. Materials Research Express, 2019, 6, 085202.	1.6	2
9	Structural and thermodynamic properties of two-dimensional confined germanene: a molecular dynamics and DFT study. Materials Research Express, 2019, 6, 086411.	1.6	9
10	Tetra-SiC – New allotrope of 2D silicon carbide. Computational Materials Science, 2019, 162, 236-244.	3.0	8
11	Confined tetra-silicene obtained by cooling from the melt. Computational Materials Science, 2019, 158, 406-413.	3.0	11
12	Novel pressure-induced topological phase transitions of supercooled liquid and amorphous silicene. Journal of Physics Condensed Matter, 2019, 31, 095403.	1.8	4
13	Formation of graphene on BN substrate by vapor deposition method and size effects on its structure. Physica B: Condensed Matter, 2018, 534, 26-33.	2.7	4
14	Crystallization of supercooled liquid and amorphous silicene. Journal of Non-Crystalline Solids, 2018, 487, 87-95.	3.1	4
15	How do packing defects modify the cooperative motions in supercooled liquids?. Chemical Physics, 2017, 490, 55-61.	1.9	2
16	Ironene – A new 2D material. Computational Materials Science, 2017, 126, 446-452.	3.0	15
17	Formation of Two-Dimensional Crystals with Square Lattice Structure from the Liquid State. Journal of Physical Chemistry C, 2016, 120, 18340-18347.	3.1	7
18	Amorphous siliceneâ€"a view from molecular dynamics simulation. Journal of Physics Condensed Matter, 2016, 28, 195401.	1.8	10

#	Article	IF	CITATIONS
19	New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System. Journal of Physical Chemistry B, 2015, 119, 15752-15757.	2.6	6
20	Melting of crystalline Si nanoparticle investigated by simulation. European Physical Journal D, 2015, 69, 1.	1.3	6
21	Substrate effects on glass formation in simple monatomic supercooled liquids. Chemical Physics, 2015, 447, 1-9.	1.9	1
22	Cooling rate effects on structure of amorphous graphene. Physica B: Condensed Matter, 2015, 456, 50-56.	2.7	10
23	Free-standing silicene obtained by cooling from 2D liquid Si: structure and thermodynamic properties. Journal Physics D: Applied Physics, 2014, 47, 495303.	2.8	14
24	Melting of crystalline silicon thin films. Computational Materials Science, 2014, 89, 97-101.	3.0	9
25	â€~Graphenization' of 2D simple monatomic liquids. Journal of Physics Condensed Matter, 2014, 26, 205101.	1.8	7
26	Crystallization of supercooled liquid and glassy Fe thin films. Computational Materials Science, 2014, 95, 491-501.	3.0	5
27	Melting of Mesoscale Lennard-Jones Crystals with Free Surfaces. Journal of the Physical Society of Japan, 2013, 82, 064601.	1.6	2
28	Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. European Physical Journal D, 2013, 67, 1.	1.3	14
29	Structural properties of simulated liquid GanAsm. Computational Materials Science, 2012, 54, 183-187.	3.0	0
30	Amorphous nanoparticles â€" Experiments and computer simulations. Physics Reports, 2012, 518, 81-140.	25. 6	63
31	Melting of monatomic glass with free surfaces. Journal of Chemical Physics, 2012, 136, 104506.	3.0	14
32	Atomic mechanism of homogeneous melting of bcc Fe at the limit of superheating. Physica B: Condensed Matter, 2012, 407, 978-984.	2.7	17
33	Glass Formation and Thermodynamics of Supercooled Monatomic Liquids. Journal of Physical Chemistry B, 2011, 115, 6946-6956.	2.6	32
34	Atomic mechanism of glass-to-liquid transition in simple monatomic glasses. Philosophical Magazine, 2011, 91, 3443-3455.	1.6	17
35	Structural defects and thermodynamics of vitreous GeO2 nanoparticles. Current Applied Physics, 2011, 11, 303-310.	2.4	2
36	Atomic mechanism of the heating-induced phase transitions of the simple monatomic glasses. Physica B: Condensed Matter, 2011, 406, 3653-3659.	2.7	9

#	Article	IF	CITATIONS
37	Pressure-induced structural and dynamic transitions in stimulated liquid aluminosilicate nanoparticles. Physics and Chemistry of Liquids, 2011, 49, 81-90.	1.2	2
38	Glass of monatomic Lennard–Jones system at nanoscale. Physica B: Condensed Matter, 2010, 405, 1908-1914.	2.7	17
39	Atomic mechanism of glass formation in supercooled monatomic liquids. Solid State Communications, 2010, 150, 1971-1975.	1.9	12
40	Molecular dynamics simulation of diffusion in liquid gallium arsenide. Computational Materials Science, 2010, 49, S221-S224.	3.0	2
41	Local icosahedral order and thermodynamics of simulated amorphous Fe. Physica B: Condensed Matter, 2009, 404, 340-346.	2.7	28
42	Molecular dynamics simulation of liquid and amorphous Fe nanoparticles. Nanotechnology, 2009, 20, 295703.	2.6	22
43	Static and thermodynamic properties of liquid and amorphous Fe ₂ O ₃ nanoparticles. Journal of Physics Condensed Matter, 2009, 21, 075103.	1.8	10
44	Structural properties of simulated amorphous GeO ₂ nanoparticles. Physica Status Solidi (B): Basic Research, 2008, 245, 1505-1511.	1.5	8
45	Cooling rate effects on structure and thermodynamics of amorphous nanoparticles. Applied Surface Science, 2008, 254, 7531-7534.	6.1	6
46	Microstructural analysis of liquid and amorphous SiO2 nanoparticles. Physica B: Condensed Matter, 2008, 403, 3199-3205.	2.7	8
47	Glasses of simple liquids with double-well interaction potential. Physica B: Condensed Matter, 2008, 403, 3910-3915.	2.7	21
48	Molecular dynamics simulations of simple monatomic amorphous nanoparticles. Physical Review B, 2008, 77, .	3.2	19
49	The glass transition and thermodynamics of liquid and amorphous TiO ₂ nanoparticles. Nanotechnology, 2008, 19, 105706.	2.6	40
50	Cooling-rate effects in simple monatomic amorphous nanoparticles. Philosophical Magazine, 2008, 88, 1461-1475.	1.6	4
51	GLASS FORMATION IN SIMULATED HIGH-DENSITY Al2O3·2SiO2. International Journal of Modern Physics B, 2008, 22, 205-218.	2.0	1
52	Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles. Journal of Physics Condensed Matter, 2008, 20, 265005.	1.8	4
53	Pressure-induced structural transition in amorphous TiO ₂ nanoparticles and in the bulk via molecular dynamics simulation. Journal Physics D: Applied Physics, 2007, 40, 7454-7461.	2.8	27
54	Structural properties of simulated liquid and amorphous aluminium silicates. Physica Scripta, 2007, 76, 165-172.	2.5	16

#	Article	IF	Citations
55	The glass transition and diffusion in simulated liquid TiO ₂ . Journal of Physics Condensed Matter, 2007, 19, 416109.	1.8	3
56	Diffusion and dynamical heterogeneity in simulated liquid SiO2under high pressure. Journal of Physics Condensed Matter, 2007, 19, 116104.	1.8	16
57	Finite Size Effects on Static and Dynamic Properties of Non-periodic Boundary Condition Supercooled Liquids. Journal of the Physical Society of Japan, 2007, 76, 114602.	1.6	5
58	Liquid–liquid phase transition and anomalous diffusion in simulated liquid GeO2. Physica B: Condensed Matter, 2007, 390, 17-22.	2.7	22
59	Dynamical heterogeneity and diffusion in high-density Al2O3·2SiO2 melts. Physica B: Condensed Matter, 2007, 400, 278-286.	2.7	29
60	Diffusion in simulated liquid GeO2 under pressure. Physica B: Condensed Matter, 2007, 394, 39-45.	2.7	12
61	Local environments of oxygen in Al2O3SiO2 melts. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 499-503.	2.1	16
62	Pressure- and temperature-induced structural changes in simulated amorphous Al2O3Â-2SiO2. Physica Status Solidi (B): Basic Research, 2007, 244, 3074-3085.	1.5	2
63	Structural properties of simulated liquid and amorphous TiO2. Physica Status Solidi (B): Basic Research, 2007, 244, 1280-1287.	1.5	67
64	Molecular Dynamics Simulation of Amorphous SiO ₂ Nanoparticles. Journal of Physical Chemistry B, 2007, 111, 12649-12656.	2.6	72
65	Liquid–liquid phase transition in simulated liquid Al2O3·2SiO2. Physica Scripta, 2006, 74, 697-701.	2.5	9
66	Temperature-induced phase transition in simulated amorphous Al2O3. Physica Status Solidi (B): Basic Research, 2006, 243, 416-423.	1.5	6
67	Tetrahedral â†" octahedral network structure transition in simulated vitreous SiO2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 356, 246-250.	2.1	15
68	COOLING RATE EFFECTS ON DYNAMICS IN SUPERCOOLED Al2O3. International Journal of Modern Physics B, 2006, 20, 947-967.	2.0	7
69	About an order of liquid–liquid phase transition in simulated liquid Al2O3. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 335, 439-443.	2.1	26
70	Annealing effects on structure in amorphous Al2O3 models. Physica B: Condensed Matter, 2005, 364, 225-232.	2.7	12
71	Simulation of aging effects on dynamics in liquid Al2O3. Physica B: Condensed Matter, 2005, 367, 210-215.	2.7	1
72	Dynamical heterogeneities in supercooled Al2O3. Journal of Physics Condensed Matter, 2005, 17, 5179-5185.	1.8	6

#	ARTICLE	IF	CITATIONS
73	Computer simulation of the structural transformation in liquid Al2O3. Journal of Physics Condensed Matter, 2005, 17, 3025-3033.	1.8	13
74	Computer simulation of the structural and thermodynamics properties of liquid and amorphous SiO2. Physica B: Condensed Matter, 2004, 348, 249-255.	2.7	28
75	Computer simulation of the effects of B and P concentrations on microstructure in amorphous Fe–B and Fe–P alloys. Physica B: Condensed Matter, 2004, 348, 347-352.	2.7	13
76	Structure and diffusion simulation of liquid Al2O3. Physica B: Condensed Matter, 2004, 352, 342-352.	2.7	13
77	Simulation of structural properties and structural transformation of amorphous Al2O3. Physica B: Condensed Matter, 2004, 352, 73-85.	2.7	14
78	Computer Simulation of The Effects of B, P Concentration on The Pore Distribution in The Amorphous Co-B, Co-P Alloys. Journal of Metastable and Nanocrystalline Materials, 2003, 18, 43-48.	0.1	8
79	Simulation of Structural and Magnetic Inhomogeneities of Amorphous Ni-P Alloys. Journal of Metastable and Nanocrystalline Materials, 2001, 9, 5-20.	0.1	7