Yuechen Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025667/publications.pdf

Version: 2024-02-01

331670 361022 1,422 81 21 35 citations h-index g-index papers 82 82 82 767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ion-cut lithium niobate on insulator technology: Recent advances and perspectives. Applied Physics Reviews, 2021, 8, .	11.3	139
2	Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electronic Advances, 2020, 3, 190042-190042.	13.3	114
3	Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Optics Express, 2012, 20, 18620.	3.4	82
4	Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 2018, 5, 872.	9.3	71
5	Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing. Optical Materials Express, 2013, 3, 433.	3.0	58
6	Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited]. Chinese Optics Letters, 2019, 17, 012302.	2.9	49
7	Femtosecond laser micromachining of lithium niobate depressed cladding waveguides. Optical Materials Express, 2013, 3, 1378.	3.0	48
8	Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Scientific Reports, 2014, 4, 5988.	3.3	46
9	Frequency comb up- and down-conversion in synchronously driven χ ⁽²⁾ optical microresonators. Optics Letters, 2018, 43, 5745.	3.3	43
10	Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation. Optics Express, 2012, 20, 9763.	3.4	36
11	Dual-wavelength waveguide lasers at 1064 and 1079  nm in Nd:YAP crystal by direct femtosecond laser writing. Optics Letters, 2015, 40, 2437.	3.3	34
12	Efficient continuous-wave laser operation at 1064 nm in Nd:YVO ₄ cladding waveguides produced by femtosecond laser inscription. Optics Express, 2012, 20, 16801.	3.4	30
13	Surface-Enhanced Raman Scattering Optophysiology Nanofibers for the Detection of Heavy Metals in Single Breast Cancer Cells. ACS Sensors, 2021, 6, 1649-1662.	7.8	30
14	Femtosecond-Laser-Inscribed BiB\$_{3}\$O\$_{6}\$ Nonlinear Cladding Waveguide for Second-Harmonic Generation. Applied Physics Express, 2012, 5, 072701.	2.4	29
15	Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation. Optics Express, 2014, 22, 12900.	3.4	27
16	Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals. Optical Materials Express, 2012, 2, 657.	3.0	26
17	Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Optics Express, 2019, 27, 30941.	3.4	26
18	A Plasmonâ€Enhanced SnSe ₂ Photodetector by Nonâ€Contact Ag Nanoparticles. Small, 2021, 17, e2102351.	10.0	25

#	Article	IF	CITATIONS
19	Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO_4 channel waveguides. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1607.	2.1	24
20	Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with "ear-like― structures: fabrication and laser generation. Optics Express, 2021, 29, 4296.	3.4	24
21	Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription. Scientific Reports, 2016, 6, 22310.	3.3	23
22	Mid-infrared waveguides in zinc sulfide crystal. Optical Materials Express, 2013, 3, 466.	3.0	22
23	Switchable single-dual-wavelength Yb,Na:CaF ₂ waveguide lasers operating in continuous-wave and pulsed regimes. Optical Materials Express, 2018, 8, 1633.	3.0	21
24	Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides. Optics Express, 2011, 19, 12490.	3.4	20
25	Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers. Optics Letters, 2012, 37, 244.	3.3	20
26	Selfâ€Powered Lithium Niobate Thinâ€Film Photodetectors. Small, 2022, 18, .	10.0	20
27	Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP ₂ . Optics Express, 2018, 26, 10833.	3.4	19
28	Efficient laser emissions at 106 μm of swift heavy ion irradiated Nd:YCOB waveguides. Optics Letters, 2011, 36, 4521.	3.3	18
29	Femtosecond laser micromachining of Nd:GdCOB ridge waveguides for second harmonic generation. Optical Materials, 2012, 34, 1913-1916.	3.6	18
30	Three-Dimensional Waveguide Splitters Inscribed in Nd:YAG by Femtosecond Laser Writing: Realization and Laser Emission. Journal of Lightwave Technology, 2016, 34, 1328-1332.	4.6	17
31	Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier. Optics Express, 2019, 27, 32659.	3.4	17
32	Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses. Optical Materials Express, 2013, 3, 278.	3.0	16
33	Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics. Optical Materials Express, 2013, 3, 645.	3.0	15
34	Optical channel waveguides in ZnSe single crystal produced by proton implantation. Optical Materials Express, 2012, 2, 455.	3.0	14
35	Femtosecond laser micromachined ridge waveguide lasers in Nd:YAG ceramics. Optical Materials, 2013, 36, 228-231.	3.6	12
36	Nearâ€Surface Buried Plasmonic Nanoparticles in Glass as Novel Nonlinear Saturable Absorbers for Ultrafast Lasers. Advanced Optical Materials, 2022, 10, 2101664.	7. 3	12

#	Article	IF	CITATIONS
37	Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing. Optical Materials, 2016, 51, 190-193.	3.6	11
38	Tailored vortex lasing based on hybrid waveguide-grating architecture in solid-state crystal. Applied Physics Letters, 2022, 120, .	3.3	11
39	Second harmonic generation of violet light in femtosecond-laser-inscribed BiB_3O_6 cladding waveguides. Optical Materials Express, 2013, 3, 1279.	3.0	10
40	Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited]. Chinese Optics Letters, 2021, 19, 060013.	2.9	10
41	Buried channel waveguides in KTiOPO4 nonlinear crystal fabricated by focused He+ beam writing. Optical Materials, 2012, 35, 184-186.	3.6	9
42	Guided-wave phase-matched second-harmonic generation in KTiOPO 4 waveguide produced by swift heavy-ion irradiation. Optical Engineering, 2014, 53, 117102.	1.0	9
43	Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength. Optics and Laser Technology, 2014, 56, 382-386.	4.6	9
44	Pulsed laser deposition of ferroelectric potassium tantalate-niobate optical waveguiding thin films. Optical Materials Express, 2018, 8, 541.	3.0	9
45	Observation of edge-to-edge topological transport in a photonic lattice. Physical Review A, 2022, 105, .	2.5	8
46	Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation. Optical Materials Express, 2014, 4, 1166.	3.0	6
47	Channel waveguide lasers at 1064  nm in Nd:YAG crystal produced by C ⁵⁺ ion irradiation with shadow masking. Applied Optics, 2014, 53, 195.	1.8	6
48	Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal. Nuclear Instruments & Methods in Physics Research B, 2014, 320, 22-25.	1.4	6
49	Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Optical Materials Express, 2019, 9, 4447.	3.0	6
50	Photonic-lattice-like guiding microstructures in Nd:YVO4 waveguides: Fabrication, 3D splitting, and lasing. Optics and Laser Technology, 2022, 145, 107540.	4.6	5
51	Dual-wavelength self-Q-switched mode-locked waveguide lasers based on Nd:LGGG cladding waveguides. Optical Materials Express, 2022, 12, 854.	3.0	5
52	Plasmon-enhanced third-order optical nonlinearity of monolayer MoS2. Applied Physics Letters, 2022, 120, .	3.3	5
53	Integrated Waveguide Grating Vortex Laser Generator Directly Written in Nd:YAG Crystal. IEEE Photonics Technology Letters, 2022, 34, 409-412.	2.5	4
54	Layer-dependent nonlinear optical properties of two-dimensional InSe and its applications in waveguide lasers. Optics Express, 2022, 30, 23986.	3.4	4

#	Article	IF	CITATIONS
55	Enhanced Second Harmonic Generation in Femtosecond Laser Inscribed Double-Cladding Waveguide of Nd:GdCOB Crystal. Journal of Lightwave Technology, 2013, 31, 3873-3878.	4.6	3
56	17-GHz waveguide lasers modulated by a heterostructure layered material. Optical Materials Express, 2021, 11, 2016.	3.0	3
57	Femtosecond laser direct writing of Nd:YLF cladding waveguides for efficient 1047-nm laser emission. Optical Materials Express, 2021, 11, 2915.	3.0	3
58	Dual-color upconversion luminescence emission from Er:LiNbO3 on-chip ridge waveguides. Results in Physics, 2021, 27, 104526.	4.1	3
59	Silicon rib-loaded LiNbO3 waveguide polarization beam splitter based on bound state in the continuum design. Optics Communications, 2021, 497, 127190.	2.1	3
60	Tapered depressed-cladding waveguide lasers modulated by Ag nanoparticles embedded in SiO2. Results in Physics, 2021, 30, 104897.	4.1	3
61	2D layered MSe ₂ (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing. Nanophotonics, 2022, 11, 3383-3394.	6.0	3
62	Femtosecond Laser Micromachining of Cladding Waveguides in KTiOAsO ₄ Crystal for Secondâ€Harmonic Generation. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100345.	2.4	2
63	Tuning the formation of \hat{l}^2 -phase poly(9,9-di-n-octylfluorenyl-2,7-diyl) via nano-confinement and polystyrene blending for improved photocatalysis. ChemPhysMater, 2022, 1, 219-226.	2.8	2
64	Potassium tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics. Journal of Physics: Conference Series, 2017, 867, 012020.	0.4	1
65	Second harmonic generation in precisely diced KTiOAsO4 ridge waveguides. Optical Materials, 2021, 121, 111561.	3.6	1
66	Advances in Dielectric Crystal Waveguides Produced by Direct Femtosecond Laser Writing. Laser and Optoelectronics Progress, 2016, 53, 010001.	0.6	1
67	Overview of Ion Beam Produced Dielectric Waveguides. Springer Series in Optical Sciences, 2020, , 21-43.	0.7	1
68	Precision-dicing of Nd:YAG ridge waveguides: A new platform for efficient integrated lasers., 2013,,.		0
69	Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6Cladding Waveguides. MATEC Web of Conferences, 2013, 8, 06011.	0.2	0
70	Three dimensional beam splitters and lasing based on Nd:YAG waveguides by femtosecond laser writing. , $2015, , .$		0
71	Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics. , 2017, , .		0
72	Fabrication and applications of dielectric optical crystalline waveguides. Chinese Science Bulletin, 2021, 66, 1968-1982.	0.7	0

YUECHEN JIA

#	Article	lF	CITATIONS
73	Ridge waveguide lasers in Nd:YAG ceramics produced by combining swift heavy ion irradiation and precise diamond blade dicing. , 2014 , , .		O
74	Whispering gallery optical parametric oscillators for the mid-infrared spectral range. , 2018, , .		0
75	Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals. , 2018, , .		0
76	High repetition rate frequency comb up- and down-conversion in synchronously driven microresonators. , 2019, , .		0
77	Fundamentals of Ion Beam Technology, Waveguides, and Nanoparticle Systems. Springer Series in Optical Sciences, 2020, , 1-19.	0.7	0
78	Photoluminescence of Dielectric Waveguides. Springer Series in Optical Sciences, 2020, , 195-214.	0.7	0
79	Nonlinear Optical Dielectric Waveguides. Springer Series in Optical Sciences, 2020, , 215-237.	0.7	0
80	Lasing Based on Dielectric Waveguides. Springer Series in Optical Sciences, 2020, , 239-261.	0.7	0
81	Nearâ€Surface Buried Plasmonic Nanoparticles in Glass as Novel Nonlinear Saturable Absorbers for Ultrafast Lasers (Advanced Optical Materials 1/2022). Advanced Optical Materials, 2022, 10, .	7.3	0