Yun-Hui Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025655/publications.pdf

Version: 2024-02-01

57758 91884 9,961 69 44 69 citations h-index g-index papers 69 69 69 11110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insight into the Fading Mechanism of the Solidâ€Conversion Sulfur Cathodes and Designing Long Cycle Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2102774.	19.5	31
2	é",ç¡«ç"μæ±ç»¼å忀§èƒ½ååŒæå≰ç−ç•¥. Chinese Science Bulletin, 2022, , .	0.7	1
3	Solid/Quasiâ€Solid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.	10.0	21
4	Optimizing the operation strategy of solid-conversion sulfur cathodes for achieving high total capacity contribution throughout the lifespan. Journal of Power Sources, 2022, 543, 231837.	7.8	2
5	Bioâ€Derived Materials Achieving High Performance in Alkali Metal–Chalcogen Batteries. Advanced Functional Materials, 2021, 31, 2008354.	14.9	13
6	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.	6.3	12
7	High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Storage Materials, 2020, 25, 724-730.	18.0	100
8	N/P-Dual-Doped Carbon-Coated Na ₃ V ₂ (PO ₄) ₂ O ₂ F Microspheres as a High-Performance Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 3670-3680.	8.0	63
9	Stabilizing Na ₃ Zr ₂ Si ₂ PO ₁₂ /Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface. Chemistry of Materials, 2020, 32, 3970-3979.	6.7	72
10	Realizing an Applicable "Solid → Solid―Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium–Sulfur Batteries. ACS Applied Materials & Solid Electrolyte Interfaces, 2019, 11, 29830-29837.	8.0	36
11	Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5214-5218.	5.1	17
12	Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst. Science China Materials, 2019, 62, 359-367.	6.3	11
13	Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. Electrochimica Acta, 2019, 298, 121-126.	5.2	40
14	Heteroatomâ€Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800323.	8.6	203
15	A Dualâ€Insertion Type Sodiumâ€Ion Full Cell Based on Highâ€Quality Ternaryâ€Metal Prussian Blue Analogs. Advanced Energy Materials, 2018, 8, 1702856.	19.5	143
16	High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism. ACS Applied Energy Materials, 2018, 1, 2295-2305.	5.1	87
17	Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Materials, 2018, 15, 108-115.	18.0	100
18	In Situ Exfoliating and Generating Active Sites on Graphene Nanosheets Strongly Coupled with Carbon Fiber toward Selfâ€5tanding Bifunctional Cathode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1703539.	19.5	137

#	Article	IF	Citations
19	A P2â€Type Layered Superionic Conductor Gaâ€Doped Na ₂ Zn ₂ TeO ₆ for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.	3.3	42
20	Polydopamine-Derived Nitrogen-Doped Carbon-Covered Na ₃ V ₂ (PO ₄) ₂ F ₃ Cathode Material for High-Performance Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36851-36859.	8.0	89
21	Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 22037-22042.	10.3	18
22	Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy, 2018, 52, 307-314.	16.0	176
23	Porous NaTi ₂ (PO ₄) ₃ /C Hierarchical Nanofibers for Ultrafast Electrochemical Energy Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27039-27046.	8.0	52
24	Enhancing Sodium-Ion Storage Behaviors in TiNb ₂ O ₇ by Mechanical Ball Milling. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8696-8703.	8.0	70
25	Binder-free Li 3 V 2 (PO 4) 3 /C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries. Nano Energy, 2017, 34, $111-119$.	16.0	85
26	Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors. ACS Applied Materials & Electrode with Integrated Lithium Storage Behaviors. ACS Applied Materials & Electrode with Integrated with Integrated Lithium Storage Behaviors.	8.0	11
27	A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries. Journal of Power Sources, 2017, 360, 319-323.	7.8	37
28	Mechanism of Capacity Fade in Sodium Storage and the Strategies of Improvement for FeS ₂ Anode. ACS Applied Materials & Interfaces, 2017, 9, 1536-1541.	8.0	77
29	Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31879-31886.	8.0	50
30	Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24545-24554.	8.0	81
31	Synthesis of nanosheet-structured Na3V2(PO4)3/C as high-performance cathode material for sodium ion batteries using anthracite as carbon source. Ceramics International, 2017, 43, 2333-2337.	4.8	35
32	In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.	21.0	95
33	Routes to High Energy Cathodes of Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1501727.	19.5	408
34	A Hierarchical N/Sâ€Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1501929.	19.5	460
35	Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Materials, 2016, 4, 92-102.	18.0	79
36	Binding TiO ₂ -B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.	10.3	47

3

#	Article	IF	CITATIONS
37	Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy, 2016, 27, 647-657.	16.0	61
38	Effect of Fe-doping followed by C+SiO2 hybrid layer coating on Li3V2(PO4)3 cathode material for lithium-ion batteries. Ceramics International, 2016, 42, 16557-16562.	4.8	11
39	TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17711-17717.	10.3	146
40	Integrated Intercalationâ€Based and Interfacial Sodium Storage in Grapheneâ€Wrapped Porous Li ₄ Ti ₅ O ₁₂ Nanofibers Composite Aerogel. Advanced Energy Materials, 2016, 6, 1600322.	19.5	141
41	A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochemistry Communications, 2016, 70, 8-12.	4.7	66
42	Superior rate performance of Li ₃ V ₂ (PO ₄) ₃ co-modified by Fe-doping and rGO-incorporation. RSC Advances, 2016, 6, 10334-10340.	3.6	30
43	Flexible and Binderâ€Free Electrodes of Sb/rGO and Na ₃ V ₂ (PO ₄) ₃ /rGO Nanocomposites for Sodiumâ€ion Batteries. Small, 2015, 11, 3822-3829.	10.0	184
44	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	16.0	253
45	Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive. Journal of Solid State Electrochemistry, 2015, 19, 415-421.	2.5	16
46	Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery. Electrochimica Acta, 2015, 174, 970-977.	5.2	87
47	Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015, 6, 6929.	12.8	969
48	Synthesis and electrochemical performance of Na-modified Li $<$ sub $>$ 2 $<$ sub $>$ Fe $<$ sub $>$ 0.5 $<$ sub $>$ Mn $<$ sub $>$ 0.5 $<$ sub $>$ SiO $<$ sub $>$ 4 $<$ sub $>$ cathode material for Li-ion batteries. RSC Advances, 2015, 5, 22818-22824.	3.6	10
49	Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon, 2015, 92, 41-63.	10.3	371
50	Architectural design and phase engineering of N/B-codoped TiO ₂ (B)/anatase nanotube assemblies for high-rate and long-life lithium storage. Journal of Materials Chemistry A, 2015, 3, 22591-22598.	10.3	49
51	Insight into the Electrode Mechanism in Lithiumâ€Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Advanced Energy Materials, 2014, 4, 1301473.	19.5	418
52	Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12733.	10.3	582
53	Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries. Scientific Reports, 2014, 4, 5064.	3 . 3	37
54	Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.	14.9	770

#	Article	IF	CITATIONS
55	Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery. Journal of Solid State Electrochemistry, 2013, 17, 1641-1647.	2.5	27
56	Controllable synthesis of spherical Li3V2(PO4)3/C cathode material and its electrochemical performance. Electrochimica Acta, 2013, 90, 433-439.	5 . 2	41
57	Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation. Electrochimica Acta, 2013, 108, 182-190.	5.2	24
58	Thermoelectric solid-oxide fuel cell with Ca2Co2O5 as cathode material. RSC Advances, 2013, 3, 2336.	3.6	10
59	Dual coreâ€"shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1716-1723.	10.3	197
60	Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage. RSC Advances, 2013, 3, 3374.	3.6	70
61	Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.	6.7	134
62	Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxidefuel cells. Journal of Materials Chemistry, 2012, 22, 225-231.	6.7	90
63	Layer-by-layer assembled MoO2–graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4, 4707.	5.6	127
64	Facile synthesis of mesoporous 0.4Li2MnO3 \hat{A} ·0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14964.	6.7	42
65	Significantly Improved Electrochemical Performance in Li ₃ V ₂ (PO ₄) ₃ /C Promoted by SiO ₂ Coating for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 12401-12408.	3.1	119
66	New Anode Framework for Rechargeable Lithium Batteries. Chemistry of Materials, 2011, 23, 2027-2029.	6.7	360
67	Effect of Vanadium Incorporation on Electrochemical Performance of LiFePO < sub > 4 < / sub > for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13520-13527.	3.1	114
68	Development and challenges of LiFePO ₄ cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.	30.8	1,058
69	High-Rate LiFePO ₄ Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. Chemistry of Materials, 2008, 20, 7237-7241.	6.7	346