
Meiyun Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025467/publications.pdf Version: 2024-02-01

MEIVIIN LIN

#	Article	IF	CITATIONS
1	The <i>Fires, Asian, and Stratospheric Transport</i> –Las Vegas Ozone Study (<i>FAST</i> -LVOS). Atmospheric Chemistry and Physics, 2022, 22, 1707-1737.	1.9	7
2	Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111372119.	3.3	29
3	Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environmental Science & Technology, 2021, 55, 4389-4398.	4.6	47
4	Summer PM _{2.5} Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 2020, 47, e2020GL089429.	1.5	18
5	The GFDL Global Atmospheric Chemistry limate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	1.3	51
6	Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nature Climate Change, 2020, 10, 444-451.	8.1	96
7	Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models. Atmospheric Chemistry and Physics, 2020, 20, 10379-10400.	1.9	15
8	Sensitivity of Ozone Dry Deposition to Ecosystemâ€Atmosphere Interactions: A Critical Appraisal of Observations and Simulations. Global Biogeochemical Cycles, 2019, 33, 1264-1288.	1.9	33
9	A new method (M ³ Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution. Geoscientific Model Development, 2019, 12, 955-978.	1.3	23
10	Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 2019, 7, .	1.1	103
11	Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States. Atmospheric Chemistry and Physics, 2018, 18, 3839-3864.	1.9	45
12	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability. Atmospheric Chemistry and Physics, 2018, 18, 773-798.	1.9	56
13	The impact of future emission policies on tropospheric ozone using a parameterised approach. Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.	1.9	47
14	The effects of intercontinental emission sources on European air pollution levels. Atmospheric Chemistry and Physics, 2018, 18, 13655-13672.	1.9	34
15	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	1.9	54
16	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128
17	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	1.1	177
18	Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56.	1.1	80

Meiyun Lin

#	Article	IF	CITATIONS
19	Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S Journal of Geophysical Research D: Atmospheres, 2017, 122, 1312-1337.	1.2	37
20	An assessment of 10-year NOAA aircraft-based tropospheric ozone profiling in Colorado. Atmospheric Environment, 2017, 158, 116-127.	1.9	6
21	On the Seasonality of Arctic Black Carbon. Journal of Climate, 2017, 30, 4429-4441.	1.2	22
22	Impact of volcanic aerosols on stratospheric ozone recovery. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9515-9528.	1.2	6
23	Air quality and climate benefits of long-distance electricity transmission in China. Environmental Research Letters, 2017, 12, 064012.	2.2	31
24	US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 2017, 17, 2943-2970.	1.9	218
25	Multi-model impacts of climate change on pollution transport from global emission source regions. Atmospheric Chemistry and Physics, 2017, 17, 14219-14237.	1.9	14
26	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	1.3	277
27	Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVERâ€AQ (2011): New evidence from NASA's GEOSâ€5 simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3687-3706.	1.2	49
28	Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 2016, 16, 10637-10650.	1.9	192
29	Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 2016, 16, 1459-1477.	1.9	79
30	Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophysical Research Letters, 2015, 42, 8719-8728.	1.5	69
31	On the capabilities and limitations of GCCM simulations of summertime regional air quality: A diagnostic analysis of ozone and temperature simulations in the US using CESM CAM-Chem. Atmospheric Environment, 2015, 101, 134-148.	1.9	43
32	Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nature Communications, 2015, 6, 7105.	5.8	186
33	Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative. Science of the Total Environment, 2015, 530-531, 471-482.	3.9	21
34	An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality. Atmospheric Environment, 2015, 109, 305-322.	1.9	93
35	Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability. Nature Geoscience, 2014, 7, 136-143.	5.4	151
36	Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmospheric Environment, 2014, 96, 284-300.	1.9	98

Meiyun Lin

#	Article	IF	CITATIONS
37	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
38	Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S Journal of Geophysical Research D: Atmospheres, 2014, 119, 324-340.	1.2	43
39	Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations. Atmospheric Chemistry and Physics, 2014, 14, 6261-6271.	1.9	40
40	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	1.9	288
41	Using synthetic tracers as a proxy for summertime PM _{2.5} air quality over the Northeastern United States in physical climate models. Geophysical Research Letters, 2013, 40, 755-760.	1.5	5
42	Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research, 2012, 117, .	3.3	218
43	Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research, 2012, 117, .	3.3	219
44	Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmospheric Chemistry and Physics, 2010, 10, 4221-4239.	1.9	87
45	Long-range transport of acidifying substances in East Asia—Part IISource–receptor relationships. Atmospheric Environment, 2008, 42, 5956-5967.	1.9	63
46	Long-range transport of acidifying substances in East Asia—Part IModel evaluation and sensitivity studies. Atmospheric Environment, 2008, 42, 5939-5955.	1.9	33
47	LONG-RANGE TRANSPORT AND TRANSFORMATION OF ACIDIFYING SUBSTANCES OVER EAST-ASIA. Proceedings of Hydraulic Engineering, 2007, 51, 91-96.	0.0	0
48	Distance-to-Target Weighting in Life Cycle Impact Assessment Based on Chinese Environmental Policy for the Period 1995-2005 (6 pp). International Journal of Life Cycle Assessment, 2005, 10, 393-398.	2.2	24