
Fatemeh Mottaghitalab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9024757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. Journal of Natural Fibers, 2022, 19, 9223-9234.	1.7	4
2	Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. International Journal of Biological Macromolecules, 2022, 213, 352-368.	3.6	12
3	Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. , 2022, 139, 213032.		23
4	Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromolecular Bioscience, 2021, 21, e2000123.	2.1	34
5	Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomaterials Science and Engineering, 2021, 7, 1074-1087.	2.6	40
6	Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication, 2021, 13, 015005.	3.7	49
7	Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 32-43.	1.8	33
8	Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia, 2020, 9, 100518.	1.3	23
9	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	4.8	134
10	Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Crossâ€Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps. Macromolecular Bioscience, 2020, 20, e2000149.	2.1	26
11	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release, 2020, 321, 324-347.	4.8	125
12	The Effect of Fibronectin Coating on Protein Corona Structure and Cellular Uptake of Single-Walled Carbon Nanotubes. Precision Nanomedicine, 2020, 3, 459-470.	0.4	1
13	Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. Journal of Controlled Release, 2019, 309, 203-219.	4.8	107
14	Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 2019, 115, 251-267.	2.6	71
15	Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications. International Journal of Biological Macromolecules, 2019, 129, 1034-1039.	3.6	31
16	New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. Journal of Controlled Release, 2019, 295, 250-267.	4.8	119
17	The bio-interface between functionalized Au NR@GO nanoplatforms with protein corona and their impact on delivery and release system. Colloids and Surfaces B: Biointerfaces, 2019, 173, 891-898.	2.5	30
18	Application of microfluidic systems for neural differentiation of cells. Precision Nanomedicine, 2019, 2, 370-381	0.4	4

#	Article	IF	CITATIONS
19	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	6.0	320
20	Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. International Journal of Nanomedicine, 2018, Volume 13, 5865-5886.	3.3	29
21	Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomaterials Science and Engineering, 2018, 4, 2836-2846.	2.6	36
22	Overview of Silk Fibroin Use in Wound Dressings. Trends in Biotechnology, 2018, 36, 907-922.	4.9	330
23	Sustainable Release of Vancomycin from Silk Fibroin Nanoparticles for Treating Severe Bone Infection in Rat Tibia Osteomyelitis Model. ACS Applied Materials & Interfaces, 2017, 9, 5128-5138.	4.0	135
24	Prospects of siRNA applications in regenerative medicine. International Journal of Pharmaceutics, 2017, 524, 312-329.	2.6	28
25	Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 31600-31611.	4.0	86
26	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62, 367-391.	9.4	62
27	siRNA-based nucleoceuticals for tissue regeneration. , 2017, , 741-768.		Ο
28	Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release, 2016, 225, 152-169.	4.8	146
29	Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydrate Polymers, 2015, 121, 190-198.	5.1	61
30	The effect of fibronectin on structural and biological properties of single walled carbon nanotube. Applied Surface Science, 2015, 339, 85-93.	3.1	7
31	Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release, 2015, 206, 161-176.	4.8	304
32	Silk as a potential candidate for bone tissue engineering. Journal of Controlled Release, 2015, 215, 112-128.	4.8	135
33	Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Materials Science and Engineering C, 2014, 35, 401-410.	3.8	86
34	Structural and functional changes of silk fibroin scaffold due to hydrolytic degradation. Journal of Applied Polymer Science, 2014, 131, .	1.3	32
35	Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. International Journal of Pharmaceutics, 2013, 454, 216-225.	2.6	70
36	A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration. PLoS ONE, 2013, 8, e74417.	1.1	90

#	Article	IF	CITATIONS
37	Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers, 2011, 86, 526-535.	5.1	65
38	Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering. Journal of Biomedical Nanotechnology, 2011, 7, 276-284.	0.5	101