
## Wolfram Fürbeth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9024367/publications.pdf Version: 2024-02-01



WOLEDAM FÃI/ORETH

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The delamination of polymeric coatings from electrogalvanised steel – a mechanistic approach<br>Corrosion Science, 2001, 43, 207-227.                                                                                                                  | 6.6  | 172       |
| 2  | The scanning Kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings. Progress in Organic Coatings, 1996, 27, 261-267.                                                                                          | 3.9  | 112       |
| 3  | Scanning Kelvinprobe investigations on the delamination of polymeric coatings from metallic surfaces. Progress in Organic Coatings, 2000, 39, 23-29.                                                                                                   | 3.9  | 90        |
| 4  | The delamination of polymeric coatings from electrogalvanized steel – a mechanistic approach<br>Corrosion Science, 2001, 43, 229-241.                                                                                                                  | 6.6  | 87        |
| 5  | First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochimica Acta, 2008, 54, 91-99.                                                                              | 5.2  | 69        |
| 6  | The delamination of polymeric coatings from electrogalvanized steel – a mechanistic approach<br>Corrosion Science, 2001, 43, 243-254.                                                                                                                  | 6.6  | 59        |
| 7  | Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints. Journal of Materials Science and Technology, 2018, 34, 163-172.                                                                     | 10.7 | 52        |
| 8  | Protection of galvanized steel from corrosion in NaCl solution by coverage with phytic acid SAM modified with some cations and thiols. Corrosion Science, 2012, 55, 339-350.                                                                           | 6.6  | 47        |
| 9  | Influence of bacterial exopolymers on cell adhesion of <i>Desulfovibrio vulgaris</i> on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS). Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 1008-1016. | 1.5  | 46        |
| 10 | Investigation of the delamination of polymer films from galvanized steel with the Scanning<br>Kelvinprobe. Fresenius' Journal of Analytical Chemistry, 1995, 353, 337-341.                                                                             | 1.5  | 39        |
| 11 | Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation. Surface and Coatings Technology, 2018, 335, 62-71.                                                                                                                              | 4.8  | 35        |
| 12 | Realization of Al/Mg-Hybrid-Joints by Ultrasound Supported Friction Stir Welding - Mechanical<br>Properties, Microstructure and Corrosion Behavior. Advanced Materials Research, 0, 966-967, 521-535.                                                  | 0.3  | 34        |
| 13 | Formation of bioactive hydroxyapatite-containing titania coatings on CP-Ti 4+ alloy generated by plasma electrolytic oxidation. Surface and Coatings Technology, 2019, 363, 66-74.                                                                     | 4.8  | 28        |
| 14 | Manufacturing and corrosion properties of ultrasound supported friction stir welded Al/Mgâ€hybrid<br>joints. Surface and Interface Analysis, 2016, 48, 843-852.                                                                                        | 1.8  | 27        |
| 15 | Formation and stability of organic acid monolayers on magnesium alloy AZ31: The role of alkyl chain<br>length and head group chemistry. Applied Surface Science, 2013, 283, 339-347.                                                                   | 6.1  | 26        |
| 16 | Progress in corrosion protection as a requirement for technical progress. Materials and Corrosion -<br>Werkstoffe Und Korrosion, 2009, 60, 481-494.                                                                                                    | 1.5  | 23        |
| 17 | Purely inorganic coatings based on nanoparticles for magnesium alloys. Electrochimica Acta, 2009, 54, 2478-2486.                                                                                                                                       | 5.2  | 23        |
| 18 | Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochemistry Communications, 2003, 5, 154-158.                                                                      | 4.7  | 20        |

Wolfram Fürbeth

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Title is missing!. Macromolecular Symposia, 2002, 187, 65-76.                                                                                                                                                                                                | 0.7 | 18        |
| 20 | Nanoparticle based inorganic coatings for corrosion protection of magnesium alloys. Surface Engineering, 2008, 24, 198-203.                                                                                                                                  | 2.2 | 17        |
| 21 | Novel Steel Corrosion Protection by Microbial Extracellular Polymeric Substances (EPS) –<br>Biofilm-Induced Corrosion Inhibition. Advanced Materials Research, 2007, 20-21, 375-378.                                                                         | 0.3 | 16        |
| 22 | Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a<br>scanning Kelvin probe. Corrosion Science, 2003, 45, 1939-1950.                                                                                            | 6.6 | 13        |
| 23 | Adsorption and characterization of molecular adhesion promoter monolayers on iron surfaces<br>under UHV conditions. Fresenius' Journal of Analytical Chemistry, 1995, 353, 657-660.                                                                          | 1.5 | 12        |
| 24 | Interplay between parameter variation and oxide structure of a modified PAA process. Surface and<br>Interface Analysis, 2013, 45, 1503-1509.                                                                                                                 | 1.8 | 11        |
| 25 | Electrochemical Behaviour of Iron in a Thirdâ€Generation Ionic Liquid: Cyclic Voltammetry and<br>Micromachining Investigations. ChemPhysChem, 2009, 10, 3090-3096.                                                                                           | 2.1 | 9         |
| 26 | Application of the hybrid process ultrasound enhanced friction stir welding on dissimilar<br>aluminum/dualâ€phase steel and aluminum/magnesium joints. Materialwissenschaft Und<br>Werkstofftechnik, 2019, 50, 893-912.                                      | 0.9 | 9         |
| 27 | Particle reinforced open porous anodizing layers on AA5005. Materials and Corrosion - Werkstoffe<br>Und Korrosion, 2017, 68, 1090-1098.                                                                                                                      | 1.5 | 7         |
| 28 | Nanoâ€sized zeolite particles as inhibitor carrier in plasma electrolytic oxide layers on AZ31. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 971-977.                                                                                       | 1.5 | 7         |
| 29 | Influence of Process Parameters on the Tribological Behavior of PEO Coatings on CP-Titanium 4+<br>Alloys for Biomedical Applications. Materials, 2021, 14, 5364.                                                                                             | 2.9 | 7         |
| 30 | Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an<br>Overview. IOP Conference Series: Materials Science and Engineering, 2016, 118, 012014.                                                                | 0.6 | 6         |
| 31 | Hybrid joints of die-casted aluminum/magnesium by ultrasound enhanced friction stir welding<br>(USE-FSW). Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1173-1186.                                                                               | 2.5 | 6         |
| 32 | The Influence of Ultrasound Enhancement during Friction Stir Welding of Aluminum to Steel. Key<br>Engineering Materials, 0, 767, 351-359.                                                                                                                    | 0.4 | 4         |
| 33 | Novel corrosion protective coatings for aluminium alloys and steels based on oxidic nanoparticles.<br>International Journal of Materials Research, 2007, 98, 589-596.                                                                                        | 0.3 | 3         |
| 34 | Biofilm Formation and Stainless Steel Corrosion Analysis of <i>Leptothrix discophora </i> . Advanced Materials Research, 2015, 1130, 79-82.                                                                                                                  | 0.3 | 3         |
| 35 | Nanoparticle-based impregnation of chromate-free anodizing layers for corrosion protection and adhesive bonding. Surface and Coatings Technology, 2018, 348, 121-129.                                                                                        | 4.8 | 3         |
| 36 | Effect of AC interference on the corrosion behavior of cathodically protected mild steel in an<br>artificial soil solution. Part I: Investigation on formed corrosion product layer. Materials and<br>Corrosion - Werkstoffe Und Korrosion, 2022, 73, 45-54. | 1.5 | 3         |

Wolfram Fürbeth

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel repair method for technical enamels based on sol–gel and sol-dispersion coatings. Materials<br>and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 167-174.                                                                             | 1.5 | 2         |
| 38 | Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys<br>during the press-hardening process. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63,<br>940-947.                        | 1.5 | 2         |
| 39 | Oxidation of neodymium precipitates in a Ti6Al4V2Nd alloy in sodium chloride solution. Materials and<br>Corrosion - Werkstoffe Und Korrosion, 2016, 67, 277-285.                                                                              | 1.5 | 2         |
| 40 | Hybrid Al/steel-joints manufactured by ultrasound enhanced friction stir welding (USE-FSW): Process comparison, nondestructive testing and microscopic analysis. IOP Conference Series: Materials Science and Engineering, 2017, 181, 012003. | 0.6 | 2         |
| 41 | Influence of La-Content and Microstructure on the Corrosion Properties of a New Free Machining Titanium Alloy. ECS Transactions, 2009, 25, 3-15.                                                                                              | 0.5 | 1         |
| 42 | Oxidation of surface lanthanum precipitates in a free-machining titanium alloy investigated by in situ<br>AFM and cyclic voltammetry. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 425-430.                                  | 1.5 | 1         |
| 43 | Hybrid joints manufactured by ultrasound enhanced friction stir welding (USE-FSW) - corrosion properties. IOP Conference Series: Materials Science and Engineering, 2017, 181, 012004.                                                        | 0.6 | 1         |
| 44 | KorrosionsbestÃ <b>¤</b> dige mikroverfahrenstechnische Apparate durch CVD-Beschichtung mit Tantal.<br>Chemie-Ingenieur-Technik, 2018, 90, 1037-1046.                                                                                         | 0.8 | 1         |
| 45 | Ultrasound Enhanced Friction Stir Welding (USE-FSW) of Hybrid Aluminum/Steel Joints. Minerals,<br>Metals and Materials Series, 2019, , 23-32.                                                                                                 | 0.4 | 1         |
| 46 | Investigations on Corrosion Properties of Ultrasoundâ€Enhanced Frictionâ€Stirâ€Welded<br>Aluminum/Dualâ€Phase Steel Joints. Steel Research International, 2021, 92, 2100249.                                                                  | 1.8 | 1         |
| 47 | Influence of La-Content and Microstructure on the Corrosion Properties of a New Free Machining<br>Titanium Alloy. ECS Meeting Abstracts, 2009, , .                                                                                            | 0.0 | 0         |
| 48 | Thin, Nanoparticulate Coatings for the Improvement of the Corrosion and Passivation Behavior of AZ<br>Magnesium Alloys. Advanced Materials Research, 2010, 138, 47-53.                                                                        | 0.3 | 0         |
| 49 | A tribute to Professor Dr.â€ing. Michael SchÃi¼tze on the occasion of his 60th birthday. Materials and<br>Corrosion - Werkstoffe Und Korrosion, 2012, 63, 855-856.                                                                            | 1.5 | 0         |
| 50 | Modification of Anodic Layers On Aluminum Alloys To Improve Corrosion Resistance And Adhesion<br>Properties. ECS Meeting Abstracts, 2009, , .                                                                                                 | 0.0 | 0         |