
Wesley Dose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9024342/publications.pdf Version: 2024-02-01

WESLEY DOSE

#	Article	IF	CITATIONS
1	In Situ and Operando Analyses of Reaction Mechanisms in Vanadium Oxides for Liâ€, Naâ€, Znâ€, and Mgâ€lons Batteries. Advanced Materials Technologies, 2022, 7, 2100799.	5.8	24
2	Cathode pre-lithiation/sodiation for next-generation batteries. Current Opinion in Electrochemistry, 2022, 31, 100827.	4.8	18
3	Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ –Graphite Cells. Chemistry of Materials, 2022, 34, 2034-2048.	6.7	28
4	Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 13206-13222.	8.0	45
5	Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nature Communications, 2022, 13, 1651.	12.8	61
6	Synthesis of high-density olivine LiFePO4 from paleozoic siderite FeCO3 and its electrochemical performance in lithium batteries. APL Materials, 2022, 10, .	5.1	4
7	Aerosol Jet Printing as a Versatile Sample Preparation Method for <i>Operando</i> Electrochemical TEM Microdevices. Advanced Materials Interfaces, 2022, 9, .	3.7	1
8	Electrochemical and structural evolution of structured V2O5 microspheres during Li-ion intercalation. Journal of Energy Chemistry, 2021, 55, 108-113.	12.9	19
9	Influence of counter ions of ammonium for nitrogen doping and carbon properties in hydrothermal carbonization: characterization and supercapacitor performance. Materials Advances, 2021, 2, 384-397.	5.4	10
10	Ruddlesden Popper 2D perovskites as Li-ion battery electrodes. Materials Advances, 2021, 2, 3370-3377.	5.4	13
11	Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 12818-12829.	10.3	16
12	The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23582-23596.	10.3	17
13	Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries. Cell Reports Physical Science, 2020, 1, 100253.	5.6	42
14	Photo-rechargeable zinc-ion batteries. Energy and Environmental Science, 2020, 13, 2414-2421.	30.8	135
15	Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material. Electrochimica Acta, 2020, 341, 135978.	5.2	13
16	Beneficial Effect of Li ₅ FeO ₄ Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode. Journal of the Electrochemical Society, 2020, 167, 160543.	2.9	27
17	Origins of Capacity Fade and Material Degradation in Ni-Rich NMC Li-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 218-218.	0.0	0
18	Investigating Surface Structure, Chemistry, and Thickness of NMC Cathodes Blended with LFO using EELS. Microscopy and Microanalysis, 2019, 25, 2180-2181.	0.4	0

WESLEY DOSE

#	Article	IF	CITATIONS
19	High-Rate Spinel LiMn ₂ 0 ₄ (LMO) Following Carbonate Removal and Formation of Li-Rich Interface by ALD Treatment. Journal of Physical Chemistry C, 2019, 123, 23783-23790.	3.1	22
20	Liquid Ammonia Chemical Lithiation: An Approach for High-Energy and High-Voltage Si–Graphite Li _{1+<i>x</i>} Ni _{0.5} Mn _{1.5} O ₄ Li-lon Batteries. ACS Applied Energy Materials, 2019, 2, 5019-5028.	5.1	31
21	Photo-accelerated fast charging of lithium-ion batteries. Nature Communications, 2019, 10, 4946.	12.8	68
22	Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries. Chemical Communications, 2018, 54, 3586-3589.	4.1	41
23	High voltage structural evolution and enhanced Na-ion diffusion in P2-Na _{2/3} Ni _{1/3â[^]x} Mg _x Mn _{2/3} O ₂ (0 ≤i>xEnvironmental Science, 2018, 11, 1470-1479.) Ti ETQq	1 1 0.78431 148
24	Rate and Composition Dependence on the Structural–Electrochemical Relationships in P2–Na _{2/3} Fe _{1–<i>y</i>} Mn _{<i>y</i>} O ₂ Positive Electrodes for Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 7503-7510.	6.7	21
25	On Disrupting the Na ⁺ -lon/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na ⁺ -lon Batteries. Journal of Physical Chemistry C, 2018, 122, 23251-23260.	3.1	55
26	Assessment of Li-Inventory in Cycled Si-Graphite Anodes Using LiFePO ₄ as a Diagnostic Cathode. Journal of the Electrochemical Society, 2018, 165, A2389-A2396.	2.9	28
27	Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4. Journal of Power Sources, 2018, 400, 549-555.	7.8	43
28	Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon, 2018, 128, 179-190.	10.3	34
29	Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: Insights into surface functionalities and formation mechanisms. Carbon, 2017, 114, 566-578.	10.3	72
30	Structure–Electrochemical Evolution of a Mn-Rich P2 Na _{2/3} Fe _{0.2} Mn _{0.8} O ₂ Na-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 7416-7423.	6.7	58
31	Crystallographic Evolution of P2 Na _{2/3} Fe _{0.4} Mn _{0.6} O ₂ Electrodes during Electrochemical Cycling. Chemistry of Materials, 2016, 28, 6342-6354.	6.7	69
32	In-Situ Investigation of the Electrodeposition of Manganese Dioxide Using Small Angle X-Ray Scattering. Journal of the Electrochemical Society, 2015, 162, A1809-A1815.	2.9	3
33	Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd ₂ TiO ₅). Journal of Materials Research, 2015, 30, 381-389.	2.6	12
34	Mechanistic and structural investigation of LixMnO2 cathodes during cycling in Li-ion batteries. Electrochimica Acta, 2014, 137, 736-743.	5.2	4
35	Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: An in-situ and ex-situ synchrotron X-ray diffraction study. Journal of Power Sources, 2014, 258, 155-163.	7.8	18
36	Kinetics of the Thermally-Induced Structural Rearrangement of Î ³ -MnO ₂ . Journal of Physical Chemistry C, 2014, 118, 24257-24265.	3.1	14

WESLEY DOSE

#	Article	IF	CITATIONS
37	Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO 2 batteries. Journal of Power Sources, 2014, 247, 852-857.	7.8	27
38	Heat treated electrolytic manganese dioxide for primary Li/MnO2 batteries: Effect of manganese dioxide properties on electrochemical performance. Electrochimica Acta, 2013, 105, 305-313.	5.2	19
39	Optimizing Li/MnO2 batteries: Relating manganese dioxide properties and electrochemical performance. Journal of Power Sources, 2013, 221, 261-265.	7.8	21
40	Preparation and Electrochemical Performance of Li _x MnO ₂ Materials by a Reduction and Lithiation Method. Journal of the Electrochemical Society, 2013, 160, A1358-A1363.	2.9	2
41	Thermal expansion of manganese dioxide using high-temperature <i>in situ</i> X-ray diffraction. Journal of Applied Crystallography, 2013, 46, 1283-1288.	4.5	9
42	Thermal Lithiation of Manganese Dioxide: Effect of Low Lithium Concentration (x ≤0.3 in) Tj ETQq0 0 0 rgBT / Electrochemical Society, 2012, 159, A904-A908.	Overlock 2 2.9	10 Tf 50 547 1 8
43	Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide. Materials Research Bulletin, 2012, 47, 1827-1834.	5.2	17
44	Manganese dioxide structural effects on its thermal decomposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1169-1177.	3.5	42
45	Kinetic analysis of \hat{I}^3 -MnO2 thermal treatment. Journal of Thermal Analysis and Calorimetry, 2011, 105, 113-122.	3.6	17
46	Thermal Treatment Effects on Manganese Dioxide Structure, Morphology and Electrochemical Performance. Journal of the Electrochemical Society, 2011, 158, A905.	2.9	17
47	Heat Treated Electrolytic Manganese Dioxide for Li/MnO2 Batteries: Effect of Precursor Properties. Journal of the Electrochemical Society, 2011, 158, A1036.	2.9	15
48	A Combined Lithium Intercalation and Plating Mechanism Using Conductive Carbonâ€Fiber Electrodes. Batteries and Supercaps, 0, , .	4.7	1