
M Anna Kowalska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9024260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Reports, 2022, 38, 110189.	6.4	31
2	Dose Escalation Trial of Desulfated Heparin (ODSH) in Septic Peritonitis. Frontiers in Veterinary Science, 2022, 9, 862308.	2.2	1
3	Population based frequency of naturally occurring lossâ€ofâ€function variants in genes associated with platelet disorders. Journal of Thrombosis and Haemostasis, 2021, 19, 248-254.	3.8	13
4	Snail Overexpression Alters the microRNA Content of Extracellular Vesicles Released from HT29 Colorectal Cancer Cells and Activates Pro-Inflammatory State In Vivo. Cancers, 2021, 13, 172.	3.7	6
5	Platelet Factor 4 (PF4) Modulates the Prothrombotic Nature of Neutrophil-Extracellular Traps (NETs): Therapeutic Implications of a NET-Stabilization Strategy. Blood, 2021, 138, 2096-2096.	1.4	2
6	Insights into Endogenous Vs Exogenous Cargo-Containing Platelet Alpha-Granules. Blood, 2021, 138, 1028-1028.	1.4	0
7	Glypican-1 Level Is Elevated in Extracellular Vesicles Released from MC38 Colon Adenocarcinoma Cells Overexpressing Snail. Cells, 2020, 9, 1585.	4.1	10
8	Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood, 2020, 135, 743-754.	1.4	39
9	FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood, 2020, 135, 2085-2093.	1.4	19
10	Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells, 2019, 8, 203.	4.1	31
11	Epithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability. Thrombosis and Haemostasis, 2019, 119, 744-757.	3.4	9
12	Platelet Factor 4 Attenuates Experimental Acute Liver Injury in Mice. Frontiers in Physiology, 2019, 10, 326.	2.8	10
13	Regulation of miRNAs by Snail during epithelial-to-mesenchymal transition in HT29 colon cancer cells. Scientific Reports, 2019, 9, 2165.	3.3	23
14	Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight, 2018, 3, .	5.0	115
15	Filamin A upregulation correlates with Snail-induced epithelial to mesenchymal transition (EMT) and cell adhesion but its inhibition increases the migration of colon adenocarcinoma HT29 cells. Experimental Cell Research, 2017, 359, 163-170.	2.6	29
16	Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemiaâ€reperfusion injury. FASEB Journal, 2017, 31, 761-770.	0.5	27
17	Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2445-2453.	2.4	24
18	A Special Role for Neutrophil Extracellular Traps (NETs) and Neutrophils in the Prothombotic Nature of Heparin-Induced Thrombocytopenia. Blood, 2016, 128, 1023-1023.	1.4	1

M ANNA KOWALSKA

#	Article	IF	CITATIONS
19	Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity. PLoS ONE, 2016, 11, e0150226.	2.5	49
20	Defective release of α granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood, 2015, 125, 1623-1632.	1.4	43
21	The NET Effect: Platelet Factor 4 and DNA-Histone Interactions in Sepsis. Blood, 2015, 126, 2197-2197.	1.4	1
22	Modulation of Protein C Activation by Histones, Platelet Factor 4, and Heparinoids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 120-126.	2.4	28
23	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Blood—Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26
24	A Proposed Role for Platelet Factor 4 in Histone Pathobiology in Sepsis. Blood, 2014, 124, 98-98.	1.4	0
25	Miniaturized T2MR Magnetic Resonance System for Analysis of Hemostasis and Detection of Impaired and Prothrombotic Blood Disorders. Blood, 2012, 120, 1118-1118.	1.4	6
26	Platelet-Targeted, Thrombin-Activatable Fibrinolytic Pro-Drugs As Novel Therapies: Application to the Prothrombotic Disorder of Heparin-Induced Thrombocytopenia (HIT). Blood, 2012, 120, 1171-1171.	1.4	0
27	Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: new insights into the prothrombotic nature of HIT. Blood, 2011, 118, 2882-2888.	1.4	30
28	Histones, Like Platelet Factor 4 (PF4), Affect Generation of Activated Protein C: Implications for the Pathogenesis of Severe Sepsis. Blood, 2011, 118, 530-530.	1.4	0
29	Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thrombosis Research, 2010, 125, 292-296.	1.7	139
30	Heparin-Induced Thrombocytopenia Antibodies Inhibit PF4-Dependent Enhancement of Activated Protein C Formation by Binding to Antigenic Complexes Formed with the Chondroitin Sulfate Side-Chain of Thrombomodulin. Blood, 2010, 116, 721-721.	1.4	0
31	Understanding Ectopically Expressed Factor VIII (F8) In Megakaryocytes: Implications for Optimum Platelet-Delivered F8 Activity for Gene Therapy. Blood, 2010, 116, 2205-2205.	1.4	4
32	Platelet-Targeted Pro-Urokinase as a Novel Thromboprophylaxis Fibrinolytic Strategy. Blood, 2010, 116, 3339-3339.	1.4	0
33	Strategies to Enhance the Efficacy of Platelet-Derived Factor (F) VIII: Studies with Inactivation Resistant FVIII (IR8) and Canine FVIII in Hemophilia A Mice Blood, 2009, 114, 3496-3496.	1.4	0
34	Structural and Functional Studies to Define the Molecular Basis by Which Platelet Factor 4 (PF4) Increases Survival of Mice in Lipopolysaccharide (LPS)-Induced Endotoxicity. Blood, 2008, 112, 19-19.	1.4	21
35	JAK2 Mutational Status, Hemostatic Risk Factors and Thrombophilic Factors in Essential Thrombocythemia (ET) Patients. Blood, 2008, 112, 4542-4542.	1.4	8
36	Structural and Therapeutic Insights from the Species Specificity and in Vivo Antithrombotic Activity of a Novel αIIb-Specific αIIbβ3 Antagonist. Blood, 2008, 112, 256-256.	1.4	11

M ANNA KOWALSKA

#	Article	IF	CITATIONS
37	Endogenous platelet factor 4 stimulates activated protein C generation in vivo and improves survival after thrombin or lipopolysaccharide challenge. Blood, 2007, 110, 1903-1905.	1.4	38
38	Negative Paracrine Effect of Platelet Factor 4 on Megakaryopoiesis Occurs through Lipoprotein Related Protein Receptor-1 on Megakaryocytes Blood, 2007, 110, 97-97.	1.4	2
39	Fibrinolytic Activity in Patients with Essential Thrombocythemia Blood, 2007, 110, 3223-3223.	1.4	0
40	Murine In Vivo Studies Support Platelet Factor 4 as a Negative Autocrine of Megakaryopoiesis with Clinical and Therapeutic Implications Blood, 2006, 108, 93-93.	1.4	1
41	Decreased Protein C Activation is Associated with Increased Lung Injury in Response to Prolonged Oxygen Exposure in Mice. FASEB Journal, 2006, 20, A211.	0.5	0
42	Release of High Levels of Platelet Factor 4 (PF4) from Platelets Improves Survival after a Lethal Lipopolysaccharide (LPS) Challenge Blood, 2006, 108, 61-61.	1.4	0
43	Pathogenic Role of Surface Platelet Factor 4 Complexes in Heparin-Induced Thrombocytopenia: Diagnostic and Therapeutic Implications Blood, 2005, 106, 55-55.	1.4	1
44	Endogenous Platelet PF4 Promotes In Vivo Activated Protein C (APC) Generation and Survival after Lethal Lipopolysaccharide Challenge in Mice: A Potential Physiologic Role for PF4 Blood, 2005, 106, 27-27.	1.4	4
45	Two Specific Domains on the Upper Surface of the αlib β Propeller Determine the Sensitivity of αlibβ3 for RGD-Containing Peptides Blood, 2005, 106, 2653-2653.	1.4	0
46	Platelet Factor 4 Regulates Platelet Count In Vivo: Implications for Platelet Recovery after Cytotoxic Therapy Blood, 2005, 106, 3144-3144.	1.4	0
47	Expression of Urokinase-Type Plasminogen Activator in Platelets Decreases Oxygen-Induced Lung Injury in Mice Blood, 2004, 104, 688-688.	1.4	1
48	Binding of stromal derived factor-1α(SDF-1α) to CXCR4 chemokine receptorin normal human megakaryoblasts butnot in platelets induces phosphorylationof mitogen-activated protein kinase p42/44 (MAPK), ELK-1 transcription factor and serine/threonine kinase AK. European Journal of Haematology, 2000, 64, 164-172.	2.2	65
49	The Role of HIV-Related Chemokine Receptors and Chemokines in Human Erythropoiesis in Vitro. Stem Cells, 2000, 18, 128-138.	3.2	32
50	Megakaryocyte precursors, megakaryocytes and platelets express the HIV coâ€receptor CXCR4 on their surface: determination of response to stromalâ€derived factorâ€1 by megakaryocytes and platelets. British Journal of Haematology, 1999, 104, 220-229.	2.5	128