Juan Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90242/publications.pdf

Version: 2024-02-01

		186265	189892
86	2,780 citations	28	50
papers	citations	h-index	g-index
89	89	89	2626
09	09	09	3626
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Leadâ€Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angewandte Chemie - International Edition, 2020, 59, 1030-1046.	13.8	320
2	The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45, 447-452.	3.8	254
3	Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment. Macromolecules, 2004, 37, 7301-7307.	4.8	199
4	Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Progress in Polymer Science, 2021, 116, 101387.	24.7	138
5	Nanostructured Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Letters, 2009, 9, 2384-2389.	9.1	133
6	Morphologies in solvent-annealed thin films of symmetric diblock copolymer. Journal of Chemical Physics, 2006, 125, 064702.	3.0	94
7	Solvent-induced microphase separation in diblock copolymer thin films with reversibly switchable morphology. Journal of Chemical Physics, 2004, 120, 11163-11170.	3.0	89
8	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperatureâ€Sensitive Polymers. Angewandte Chemie - International Edition, 2019, 58, 11910-11917.	13.8	80
9	Ordered porous polymer films via phase separation in humidity environment. Polymer, 2005, 46, 5334-5340.	3.8	69
10	Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics, 2003, 204, 125-130.	2.2	65
11	Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block Copolymer Thin Films. Macromolecular Rapid Communications, 2007, 28, 1422-1428.	3.9	53
12	Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 2020, 77, 105043.	16.0	52
13	Controlling the size of nanostructures in thin films via blending of block copolymers and homopolymers. Journal of Chemical Physics, 2005, 122, 114706.	3.0	49
14	One step route to the fabrication of arrays of TiO ₂ nanobowls via a complementary block copolymer templating and sol–gel process. Soft Matter, 2008, 4, 515-521.	2.7	46
15	Solvent vapor induced dewetting in diblock copolymer thin films. Polymer, 2005, 46, 5767-5772.	3.8	43
16	Morphology change of asymmetric diblock copolymer micellar films during solvent annealing. Polymer, 2007, 48, 2434-2443.	3.8	40
17	Microphase Separation of Block Copolymer Thin Films. Macromolecular Rapid Communications, 2010, 31, 591-608.	3.9	37
18	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie - International Edition, 2020, 59, 14942-14949.	13.8	36

#	Article	IF	CITATIONS
19	An Optical Waveguide Study on the Nanopore Formation in Block Copolymer/Homopolymer Thin Films by Selective Solvent Swelling. Journal of Physical Chemistry B, 2006, 110, 15381-15388.	2.6	35
20	Simultaneous blue, green, and red emission from diblock copolymer micellar films: a new approach to white-light emission. Chemical Communications, 2009, , 6723.	4.1	35
21	Unravelling the Correlation between Charge Mobility and Cocrystallization in Rod–Rod Block Copolymers for Highâ€Performance Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2018, 57, 8644-8648.	13.8	35
22	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2017, 56, 12946-12951.	13.8	34
23	Pattern formation in a confined polymer film induced by a temperature gradient. Polymer, 2004, 45, 8013-8017.	3.8	33
24	Toward high efficiency organic photovoltaic devices with enhanced thermal stability utilizing P3HT-b-P3PHT block copolymer additives. Journal of Materials Chemistry A, 2016, 4, 18432-18443.	10.3	31
25	Enhanced white-light emission from multiple fluorophores encapsulated in a single layer of diblock copolymer micelles. Chemical Communications, 2011, 47, 2787.	4.1	30
26	Chemicalâ€Bondingâ€Directed Hierarchical Assembly of Nanoribbonâ€Shaped Nanocomposites of Gold Nanorods and Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2016, 55, 8686-8690.	13.8	30
27	Reversibly strain-tunable elastomeric photonic crystals. Chemical Physics Letters, 2004, 390, 285-289.	2.6	29
28	Insights into poly(3â€hexylthiophene)â€∢i>bà6€poly(ethylene oxide) block copolymer: Synthesis and solventâ€induced structure formation in thin films. Journal of Polymer Science Part A, 2012, 50, 5060-5067.	2.3	29
29	Tailoring Phase Transition in Poly(3-hexylselenophene) Thin Films and Correlating Their Crystalline Polymorphs with Charge Transport Properties for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 9674-9682.	4.8	29
30	The SiaA/B/C/D signaling network regulates biofilm formation in <i>Pseudomonas aeruginosa</i> EMBO Journal, 2020, 39, e103412.	7.8	29
31	Crystallization and Microphase Morphology of Side-Chain Cross-Linkable Poly(3-hexylthiophene)- <i>block</i> -poly[3-(6-hydroxy)hexylthiophene] Diblock Copolymers. Macromolecules, 2016, 49, 287-297.	4.8	28
32	Solvent Induced Sphere Development in Symmetric Diblock Copolymer Thin Films. Macromolecular Rapid Communications, 2005, 26, 738-743.	3.9	26
33	Fabrication and Photocatalytic Activities of Morphologyâ€Controlled Titania Nanoobject Arrays by Block Copolymer Templates. Macromolecular Rapid Communications, 2007, 28, 2055-2061.	3.9	25
34	Recent advances in conjugated polythiophene-based rod–rod block copolymers: From morphology control to optoelectronic applications. Giant, 2020, 4, 100039.	5.1	25
35	Multistimuliâ€Responsive Luminescence Switching of Pyrazine Derivative Based Donor–Acceptor–Donor Luminophores. Chemistry - an Asian Journal, 2016, 11, 285-293.	3 . 3	24
36	Dewetting of Thin Polystyrene Films under Confinement. Langmuir, 2007, 23, 2326-2329.	3.5	23

#	Article	IF	Citations
37	Bleifreie Halogenidâ€Perowskitâ€Nanokristalle: Kristallstrukturen, Synthese, StabilitÃæn und optische Eigenschaften. Angewandte Chemie, 2020, 132, 1042-1059.	2.0	22
38	Hierarchical Self-Assembly of Conjugated Block Copolymers and Semiconducting Nanorods into One-Dimensional Nanocomposites. Macromolecules, 2018, 51, 8833-8843.	4.8	21
39	Two-Dimensional Arrays of Strings of TiO2 Nanoparticles via Cooperative Block Copolymer Self-Assembly. Chemistry of Materials, 2008, 20, 1200-1202.	6.7	18
40	Transforming Polymorphs <i>via</i> Meniscus-Assisted Solution-Shearing Conjugated Polymers for Organic Field-Effect Transistors. ACS Nano, 2022, 16, 11194-11203.	14.6	18
41	Chemicalâ€Bondingâ€Directed Hierarchical Assembly of Nanoribbonâ€Shaped Nanocomposites of Gold Nanorods and Poly(3â€hexylthiophene). Angewandte Chemie, 2016, 128, 8828-8832.	2.0	17
42	Pattern formation in polymer films under the mask. Polymer, 2003, 44, 2379-2384.	3.8	16
43	A Polymer Composite Film with Reversible Responsive Behaviors. Macromolecular Rapid Communications, 2006, 27, 136-141.	3.9	16
44	Visible light-driven superoxide generation by conjugated polymers for organic synthesis. Nano Research, 2018, 11, 1099-1108.	10.4	16
45	Effect of Block Sequence in All-Conjugated Triblock Copoly(3-alkylthiophene)s on Control of the Crystallization and Field-Effect Mobility. Macromolecules, 2020, 53, 5775-5786.	4.8	16
46	Tailoring Cocrystallization and Microphase Separation in Rod–Rod Block Copolymers for Field-Effect Transistors. Macromolecules, 2021, 54, 4571-4581.	4.8	15
47	Cocrystallization-Promoted Charge Mobility in All-Conjugated Diblock Copolymers for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 58094-58104.	8.0	15
48	Morphology control of poly(3-hexylthiophene)-b-poly(ethylene oxide) block copolymer by solvent blending. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 544-551.	2.1	14
49	Dipicolylamine Functionalized Polyfluorene Based Gel with Lower Critical Solution Temperature: Preparation, Characterization, and Application. ACS Applied Materials & (Interfaces, 2017, 9, 8872-8879.	8.0	14
50	Largeâ€Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscusâ€Assisted Selfâ€Assembly. Angewandte Chemie - International Edition, 2021, 60, 11751-11757.	13.8	14
51	Controlling morphology and crystalline structure in poly(3-hexylselenophene) solutions during aging. RSC Advances, 2015, 5, 107970-107976.	3.6	13
52	Hydrogen-bonding-directed helical nanofibers in a polythiophene-based all-conjugated diblock copolymer. Soft Matter, 2018, 14, 5906-5912.	2.7	13
53	Unravelling the Correlation between Microphase Separation and Cocrystallization in Thiophene-Selenophene Block Copolymers for Organic Field-Effect Transistors. Macromolecules, 2020, 53, 10245-10255.	4.8	13
54	Transition from polythiophene-based one-dimensional nanofibers to spherical clusters in ultrafiltration. Soft Matter, 2012, 8, 9981.	2.7	12

#	Article	IF	CITATIONS
55	Synthesis, characterization, and solution structure of all-conjugated polyelectrolyte diblock copoly(3-hexylthiophene)s. RSC Advances, 2014, 4, 19646.	3.6	12
56	Controlling the morphology and crystallization of a thiophene-based all-conjugated diblock copolymer by solvent blending. Soft Matter, 2017, 13, 5261-5268.	2.7	11
57	Transformation from Nanofibers to Nanoribbons in Poly(3â€hexylthiophene) Solution by Adding Alkylthiols. Macromolecular Rapid Communications, 2018, 39, e1800048.	3.9	11
58	Formation of nanofibers in Poly(9,9-dioctylfluorene) toluene solutions during aging. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 633-639.	2.1	10
59	Simultaneous light emissions from two different types of fluorophores in diblock copolymer micellar films. Applied Physics Letters, 2008, 93, .	3.3	9
60	From Nanodot to Nanowire: Hybrid Au/Titania Nanoarrays by Block Copolymer Templates. Macromolecular Rapid Communications, 2009, 30, 1857-1861.	3.9	9
61	Rapid Route to Polar Solvent-Directed Growth of Perovskite Nanowires. ACS Applied Nano Materials, 2019, 2, 7910-7915.	5.0	9
62	High-k titanium–aluminum oxide dielectric films prepared by inorganic–organic hybrid solution. Journal of Sol-Gel Science and Technology, 2014, 71, 458-463.	2.4	8
63	Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa. ELife, 2021, 10, .	6.0	8
64	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperatureâ€Sensitive Polymers. Angewandte Chemie, 2019, 131, 12036-12043.	2.0	7
65	Iron facilitates the <scp>RetSâ€Gacâ€Rsm</scp> cascade to inversely regulate protease <scp>IV</scp> (<i>piv</i>) expression via the sigma factor <scp>PvdS</scp> in <scp><i>Pseudomonas aeruginosa</i></scp> . Environmental Microbiology, 2020, 22, 5402-5413.	3.8	7
66	Genomic characterisation of clinical Pseudomonas aeruginosa isolate PAG5 with a multidrug-resistant megaplasmid from China. Journal of Global Antimicrobial Resistance, 2020, 21, 130-131.	2.2	7
67	One-dimensional hairy CNT/polymer/Au nanocomposites via ligating with amphiphilic crosslinkable block copolymers. Giant, 2021, 5, 100048.	5.1	7
68	Semiconducting Spaghetti-like Organic–Inorganic Nanojunctions via Sequential Self-Assembly of Conjugated Polymers and Quantum Dots. Chemistry of Materials, 2022, 34, 847-853.	6.7	6
69	Direct patterning of polymer-based photo luminescent structures with a mask. Thin Solid Films, 2004, 450, 329-333.	1.8	5
70	Formation of starâ€like and linear nanofibers via controlled crystallization of poly(3â€dodecylthiophene). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1268-1272.	2.1	5
71	Rapid Meniscusâ€Assisted Solutionâ€Printing of Conjugated Block Copolymers for Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, .	14.9	5
72	Unfolding the cocrystallization–charge transport correlation in all-conjugated triblock copolymers via meticulous molecular engineering for organic field-effect transistors. Nano Energy, 2022, 100, 107489.	16.0	5

#	Article	IF	CITATIONS
73	Photocatalytic printing of inorganic nanopatterns via poly(styrene-block-carbosilane) copolymer thin films on titania substrates. Chemical Communications, 2009, , 1091.	4.1	4
74	Unravelling the Correlation between Charge Mobility and Cocrystallization in Rod–Rod Block Copolymers for Highâ€Performance Fieldâ€Effect Transistors. Angewandte Chemie, 2018, 130, 8780-8784.	2.0	4
75	Largeâ€Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscusâ€Assisted Selfâ€Assembly. Angewandte Chemie, 2021, 133, 11857-11863.	2.0	4
76	Correlating crystalline structure with charge mobility in conjugated statistical copolymers for field-effect transistors. Polymer, 2021, 227, 123854.	3.8	4
77	Preparation and Characterization of Highly Stable and Aqueous Dispersion of Conjugated Polyelectrolyte/Single-Walled Carbon Nanotube Nanocomposites. Acta Chimica Sinica, 2018, 76, 453.	1.4	4
78	The Formation of Ordered Nanoholes in Binary, Chemically Similar, Symmetric Diblock Copolymer Blend Films. Macromolecular Rapid Communications, 2004, 25, 1181-1185.	3.9	2
79	A Simple Route to Hierarchical Rings of Diblock Copolymer Micelles. Macromolecular Rapid Communications, 2020, 41, 1900525.	3.9	2
80	The Influencing Factors on the Ring-shaped Morphology in PI- <i>b</i> -P2VP Diblock Copolymer. Acta Chimica Sinica, 2013, 71, 1141.	1.4	2
81	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie, 2020, 132, 15052-15059.	2.0	1
82	Self-Assembly of Conjugated Polymers Into Ring Structures by Breath Figures. Science of Advanced Materials, 2015, 7, 848-854.	0.7	1
83	Morphologies in Acetone-Annealed Polystyrene-Poly(methyl methacrylate) Diblock Copolymer Thin Films. Acta Chimica Sinica, 2012, 70, 1371.	1.4	1
84	Rýcktitelbild: Chemical-Bonding-Directed Hierarchical Assembly of Nanoribbon-Shaped Nanocomposites of Gold Nanorods and Poly(3-hexylthiophene) (Angew. Chem. 30/2016). Angewandte Chemie, 2016, 128, 8912-8912.	2.0	0
85	<1>A Special Issue on Functional Polymeric Nanomaterials. Science of Advanced Materials, 2015, 7, 827-829.	0.7	0
86	Rapid Meniscusâ€Assisted Solutionâ€Printing of Conjugated Block Copolymers for Fieldâ€Effect Transistors (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	14.9	0