Shuichi Miyazaki

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9024038/shuichi-miyazaki-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 306 14,748 114 h-index g-index citations papers 6.45 15,745 319 3.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
306	Synthesis of nanotubular oxide on Ti24Zr110Nb2Sn as a drug-releasing system to prevent the growth of Staphylococcus aureus. <i>Chemical Papers</i> , 2021 , 75, 2441-2450	1.9	2
305	Effect of N addition on nano-domain structure and mechanical properties of a meta-stable Ti-Zr based alloy. <i>Scripta Materialia</i> , 2021 , 203, 114068	5.6	1
304	Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys. <i>Materials</i> , 2020 , 13,	3.5	24
303	Isothermal martensitic transformation behavior of TiNbD alloy. <i>Materials Letters</i> , 2019 , 257, 126691	3.3	3
302	Corrosion behavior, in vitro and in vivo biocompatibility of a newly developed Ti-16Nb-3Mo-1Sn superelastic alloy. <i>Materials Science and Engineering C</i> , 2019 , 104, 109906	8.3	3
301	Effect of Stoichiometry on Shape Memory Properties and Functional Stability of Ti?Ni?Pd Alloys. <i>Materials</i> , 2019 , 12,	3.5	7
300	Stress induced martensitic transformation and shape memory effect in Zr-Nb-Sn alloys. <i>Scripta Materialia</i> , 2019 , 162, 412-415	5.6	11
299	Effect of heat treatment condition on microstructure and superelastic properties of Ti24Zr10Nb2Sn. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 893-898	5.7	18
298	Martensitic Transformation Characteristics 2018 , 1-52		1
297	Effect of Interstitial Alloying Elements on Shape Memory and Superelastic Properties 2018, 83-109		
296	Thermomechanical Treatment and Microstructure Control 2018 , 111-145		O
295	Unique Properties of Metastable Beta Ti Alloys Related to Martensitic Transformation 2018 , 147-180		
294	Biocompatibility of Superelastic Beta Ti Alloys 2018 , 181-191		
293	Fabrication and Characterization of Shape Memory Alloys 2018 , 193-205		1
292	Shape Memory Effect and Superelasticity 2018 , 53-81		3
291	Effect of Al addition on superelastic properties of TiZrNb-based alloys. <i>Functional Materials Letters</i> , 2017 , 10, 1740002	1.2	4
290	A novel method for fabrication of Ti24Zr10Nb2Sn alloy oxide nanotubes-chitosan nanocomposite films. <i>Materials Letters</i> , 2017 , 205, 134-137	3.3	2

(2015-2017)

289	Tensile test criterion of transformation-induced elasticity and plasticity alloys for load-displacement measurement. <i>Journal of Alloys and Compounds</i> , 2017 , 711, 305-311	5.7	
288	My Experience with TiNi-Based and Ti-Based Shape Memory Alloys. <i>Shape Memory and Superelasticity</i> , 2017 , 3, 279-314	2.8	43
287	SMA foil-based elastocaloric cooling: from material behavior to device engineering. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 424003	3	51
286	Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017 , 65, 716-	7 2 3 ¹	25
285	Acoustic Emission Study of Tilli Shape-Memory Alloy in Loading Unloading. <i>Springer Proceedings in Physics</i> , 2017 , 155-162	0.2	
284	Role of Interstitial Oxygen Atom on Martensitic Transformation of Ti-Nb Alloy. <i>Advances in Science and Technology</i> , 2016 , 97, 115-118	0.1	
283	Enhancement of Shape Memory Properties through Precipitation Hardening in a Ti-Rich Ti-Ni-Pd High Temperature Shape Memory Alloy. <i>Materials Transactions</i> , 2016 , 57, 241-249	1.3	5
282	Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys. <i>Scripta Materialia</i> , 2016 , 123, 55-58	5.6	30
281	Role of oxygen atoms in ∄martensite of Ti-20 at.% Nb alloy. <i>Scripta Materialia</i> , 2016 , 112, 15-18	5.6	30
280	Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy. <i>Shape Memory and Superelasticity</i> , 2016 , 2, 29-36	2.8	3
279	Optimum rolling ratio for obtaining {001} recrystallization texture in Ti-Nb-Al biomedical shape memory alloy. <i>Materials Science and Engineering C</i> , 2016 , 61, 499-505	8.3	23
278	Martensitic Transformation Behavior of Oxygen-Added Ti-20at.% Nb ALLOY 2016 , 1007-1009		
277	Shape Memory Behavior of Ti-Au-Cr Biomedical Alloy 2016 , 1695-1698		
276	Several Issues in the Development of TiNb-Based Shape Memory Alloys. <i>Shape Memory and Superelasticity</i> , 2016 , 2, 380-390	2.8	31
275	Energy-efficient miniature-scale heat pumping based on shape memory alloys. <i>Smart Materials and Structures</i> , 2016 , 25, 085037	3.4	66
274	Crystal Structure, Transformation Strain, and Superelastic Property of TiBlbIIr and TiBlbIIIa Alloys. <i>Shape Memory and Superelasticity</i> , 2015 , 1, 107-116	2.8	91
273	A comparative study on the effects of the Land Land Land Land Land Land Land Land	5.6	18
272	Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. <i>Acta Biomaterialia</i> , 2015 , 17, 56-67	10.8	89

271	Effect of B addition on the microstructure and superelastic properties of a Ti-26Nb alloy. <i>Materials Science & Microstructure and Processing</i> , 2015 , 644, 85-89	5.3	14
270	Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of TiŊb᠒rIIaŊ alloys. <i>Acta Materialia</i> , 2015 , 100, 313-322	8.4	54
269	Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. <i>Materials Science and Engineering C</i> , 2015 , 48, 11-20	8.3	72
268	Effect of Nb content and heat treatment temperature on superelastic properties of Ti¼4Zr(B¼2)Nb¼Sn alloys. <i>Scripta Materialia</i> , 2015 , 95, 46-49	5.6	61
267	Effect of Zr Addition on Mechanical and Shape Memory Properties of Ti-5Mo-3Sn Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 37-44	0.4	2
266	Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys. <i>Materials Transactions</i> , 2015 , 56, 625-634	1.3	72
265	Effect of Annealing Temperature on Microstructure and Superelastic Properties of Ti-Au-Cr-Zr Alloy. <i>Materials Transactions</i> , 2015 , 56, 404-409	1.3	17
264	The Effect of Aging Temperature on Morphology of Phase in Ti-3Mo-6Sn-5Zr Shape Memory Alloy. <i>Materials Today: Proceedings</i> , 2015 , 2, S817-S820	1.4	1
263	Deformation Behavior of Ti-4Au-5Cr-8Zr Superelastic Alloy With or Without Containing Ti3Au Precipitates. <i>Materials Today: Proceedings</i> , 2015 , 2, S821-S824	1.4	4
262	Effect of Sn Content on Phase Constitution and Mechanical Properties of Ti-Cr-Sn Shape Memory Alloys. <i>Materials Today: Proceedings</i> , 2015 , 2, S825-S828	1.4	6
261	The Elastocaloric Effect in TiNi-based Foils. <i>Materials Today: Proceedings</i> , 2015 , 2, S971-S974	1.4	18
260	Formation Process of Triangular Morphology of Self-Accommodation Martensite in Ti-Nb-Al Shape Memory Alloy. <i>MATEC Web of Conferences</i> , 2015 , 33, 06001	0.3	
259	A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications. <i>Shape Memory and Superelasticity</i> , 2015 , 1, 85-106	2.8	8
258	Heating-induced martensitic transformation and time-dependent shape memory behavior of TiNbD alloy. <i>Acta Materialia</i> , 2014 , 80, 317-326	8.4	33
257	Origin of {3 3 2} twinning in metastable ETi alloys. <i>Acta Materialia</i> , 2014 , 64, 345-355	8.4	109
256	Basic Research and Development of Shape Memory Alloys. <i>Materia Japan</i> , 2014 , 53, 197-208	0.1	1
255	Effect of Heat Treatment Condition on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. <i>Advanced Materials Research</i> , 2014 , 922, 622-625	0.5	3
254	Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy. <i>Advanced Materials Research</i> , 2014 , 922, 137-142	0.5	5

253	Effect of cold rolling ratio on the nanoscale precipitation behavior of TiNiPdCu based high temperature shape memory alloys. <i>Journal of Alloys and Compounds</i> , 2014 , 599, 212-218	5.7	7
252	The effect of Pd content on microstructure and shape-memory properties of TiNiPdQu alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 19-24	5.3	12
251	Effect of Sn addition on stress hysteresis and superelastic properties of a Till5NbBMo alloy. <i>Scripta Materialia</i> , 2014 , 72-73, 29-32	5.6	49
250	Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S92-S95	5.7	1
249	Microstructure and martensitic transformation behavior of crystallized TiB6NiIISn (at%) alloy ribbons. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S195-S199	5.7	4
248	Effect of Nb content on deformation behavior and shape memory properties of TiNb alloys. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S435-S438	5.7	40
247	Martensitic transformation behavior of TiNiBn alloys. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S200-	S 5210 4	6
246	Nanodomain structure and its effect on abnormal thermal expansion behavior of a TiØ3NbØZrØ.7TaØ.2O alloy. <i>Acta Materialia</i> , 2013 , 61, 4874-4886	8.4	87
245	Effect of phase precipitation on martensitic transformation and mechanical properties of metastable TiBCrBSn biomedical alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S427-S430	5.7	11
244	Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy. Journal of Alloys and Compounds, 2013 , 577, S383-S387	5.7	20
243	Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys. <i>Acta Materialia</i> , 2013 , 61, 4797-4810	8.4	24
242	Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of TiNb alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S404-S407	5.7	23
241	Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. <i>Materials Science Forum</i> , 2013 , 738-739, 262-266	0.4	6
240	Incompatibility and preferred morphology in the self-accommodation microstructure of Eitanium shape memory alloy. <i>Philosophical Magazine</i> , 2013 , 93, 618-634	1.6	30
239	The strain rate sensitivity behavior in Ti based shape memory alloys. <i>Transactions of the Materials Research Society of Japan</i> , 2013 , 38, 545-548	0.2	1
238	212 The Microstructure and Mechanical Properties of Ti-Au-Ta and Ti-Au-Cr-Ta Biomedical Alloys. <i>The Proceedings of the Materials and Processing Conference</i> , 2013 , 2013.21, _212-1212-2_	Ο	
237	Miniaturized shape memory alloy pumps for stepping microfluidic transport. <i>Sensors and Actuators B: Chemical</i> , 2012 , 165, 157-163	8.5	32
236	Crystallization and martensitic transformation behavior of TiNiBn alloy ribbons. <i>Intermetallics</i> , 2012 , 30, 51-56	3.5	5

235	Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy. <i>Acta Materialia</i> , 2012 , 60, 5900-5913	8.4	25
234	Room temperature aging behavior of TiNbMo-based superelastic alloys. <i>Acta Materialia</i> , 2012 , 60, 2437-2447	8.4	46
233	Effect of Ageing on Mechanical and Shape Memory Properties of Ti-5Cr-4Ag Alloy. <i>Key Engineering Materials</i> , 2012 , 510-511, 111-117	0.4	3
232	Deformation Texture of Ti-26mol%Nb-3mol%Al Elitanium Alloy. <i>Materials Science Forum</i> , 2012 , 706-709, 1899-1902	0.4	6
231	Stability of Ti-Ta Base High Temperature Shape Memory Alloys. <i>Materials Science Forum</i> , 2012 , 706-709, 1921-1924	0.4	1
230	Composition Dependence of Compatibility in Self-Accommodation Microstructure of Elitanium Shape Memory Alloy. <i>Advances in Science and Technology</i> , 2012 , 78, 25-30	0.1	1
229	Martensitic transformation and superelastic properties of titanium alloys containing interstitial elements. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2012 , 62, 257-262	0.3	3
228	Research and Development of Ti-Ni-base Shape Memory Alloys. <i>Materia Japan</i> , 2012 , 51, 209-215	0.1	1
227	Comparative Study of Ti-xCr-3Sn Alloys for Biomedical Applications. <i>Materials Transactions</i> , 2011 , 52, 1787-1793	1.3	15
226	Modelling Residual Strains During Cycling of TiNi and TiNi u Shape Memory Alloys in a Pseudoelastic Range of Behaviour Conditions. <i>Strain</i> , 2011 , 47, e457-e466	1.7	3
225	Ageing behavior of TiBCrBSn Ititanium alloy. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 530, 504-510	5.3	16
224	Novel ETiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. <i>Scripta Materialia</i> , 2011 , 64, 1114-1117	5.6	67
223	Crystallization behavior and microstructure of TiB6NiIISn (at.%) alloy ribbons. <i>Scripta Materialia</i> , 2011 , 65, 611-614	5.6	8
222	Microstructures and martensitic transformation behavior of TiNiBn alloys. <i>Scripta Materialia</i> , 2011 , 65, 608-610	5.6	14
221	Cold workability and shape memory properties of novel TiNiHfNb high-temperature shape memory alloys. <i>Scripta Materialia</i> , 2011 , 65, 846-849	5.6	58
220	Lattice modulation and superelasticity in oxygen-added ETi alloys. <i>Acta Materialia</i> , 2011 , 59, 6208-6218	8.4	187
219	Anomalous temperature dependence of the superelastic behavior of TiNbMo alloys. <i>Acta Materialia</i> , 2011 , 59, 1464-1473	8.4	86
218	Martensitic transformation and shape memory properties of TillaBn high temperature shape memory alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> 2011 , 528, 7238-7246	5.3	61

(2010-2011)

217	Effect of Pd content on crystallization and shape memory properties of TiNiPd thin films. <i>International Journal of Smart and Nano Materials</i> , 2011 , 2, 9-21	3.6	10	
216	Cold Workability, Mechanical Properties, Pseoudoelastic and Shape Memory Response of Silver Added Ti-5Cr Alloys. <i>Advanced Materials Research</i> , 2011 , 409, 639-644	0.5	7	
215	Reply to IDn substructure in titanium alloy martensite II <i>Philosophical Magazine</i> , 2011 , 91, 2079-2080	1.6	0	
214	Effect of Aging on Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2150-2153	0.4	7	
213	Phase Constituents of Ti-Cr-Au and Ti-Cr-Au-Zr Alloy Systems. <i>Materials Science Forum</i> , 2010 , 654-656, 2122-2125	0.4	5	
212	Effect of Carbon Addition of Shape Memory Properties of TiNb Alloys. <i>Materials Science Forum</i> , 2010 , 638-642, 2046-2051	0.4	6	
211	Phase Constitution and Mechanical Properties of Ti-(Cr, Mn)-Sn Biomedical Alloys. <i>Materials Science Forum</i> , 2010 , 654-656, 2118-2121	0.4	23	
21 0	Phase Constitution and Mechanical Property of Ti-Cr and Ti-Cr-Sn Alloys Containing 3D Transition Metal Elements. <i>Advanced Materials Research</i> , 2010 , 89-91, 307-312	0.5	6	
209	Stress Amplitude Dependence of Internal Friction in TiNbAl Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 638-642, 2064-2067	0.4		
208	Effect of Nitrogen Addition on Mechanical Property of Ti-Cr-Sn Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2126-2129	0.4	4	
207	Effect of randomness on ferroelastic transitions: Disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. <i>Physical Review B</i> , 2010 , 82,	3.3	41	
206	Antiphase boundary-like stacking fault in Amartensite of disordered crystal structure in Etitanium shape memory alloy. <i>Philosophical Magazine</i> , 2010 , 90, 3475-3498	1.6	44	
205	WEAR BEHAVIOR OF NITI THIN FILM AT MICRO-SCALE. <i>International Journal of Modern Physics B</i> , 2010 , 24, 85-93	1.1	6	
204	Self-Accommodation Morphology in Ti-Nb-Al Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2154-2157	0.4	4	
203	Crystallization behavior of cold worked TiB0NiZ0Cu(at%) alloy ribbons. <i>Intermetallics</i> , 2010 , 18, 1813-18	81375	2	
202	Mechanical stability of Si thin film deposited on a TiB0.3Ni(at%) alloy. <i>Journal of Alloys and Compounds</i> , 2010 , 497, L13-L16	5.7	6	
201	Shape memory effect-induced crack closure in Si thin film deposited on a TiB0.3Ni (at%) alloy substrate. <i>Journal of Alloys and Compounds</i> , 2010 , 507, L8-L12	5.7	5	
200	Transformation temperatures and shape memory characteristics of a Ti45NiBCu(at %) alloy annealed by Joule heating. <i>Physica Scripta</i> , 2010 , T139, 014068	2.6	1	

199	New internalized distraction device for craniofacial plastic surgery using Ni-free, Ti-based shape memory alloy. <i>Journal of Craniofacial Surgery</i> , 2010 , 21, 1839-42	1.2	3
198	In Vitro Biocompatibility of Ni-Free Ti-Based Shape Memory Alloys for Biomedical Applications. <i>Materials Transactions</i> , 2010 , 51, 1944-1950	1.3	20
197	Effect of heat treatment temperature on the microstructure and actuation behavior of a TiNiCu thin film microactuator. <i>Acta Materialia</i> , 2010 , 58, 6064-6071	8.4	13
196	Effect of nitrogen addition and annealing temperature on superelastic properties of TiNbarda alloys. <i>Materials Science & Discretary and Processing</i> , 2010 , 527, 6844-6852	5.3	47
195	Grain refinement of a rapidly solidified TiB0NiD0Cu alloy by two-step annealing. <i>Scripta Materialia</i> , 2010 , 63, 1001-1004	5.6	5
194	Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured TiNbAl shape memory alloy. <i>Acta Materialia</i> , 2010 , 58, 2535-2544	8.4	36
193	Shape memory properties of TiNbMo biomedical alloys. <i>Acta Materialia</i> , 2010 , 58, 4212-4223	8.4	161
192	Macroscopic stressEtrain curve, local strain band behavior and the texture of NiTi thin sheets. <i>Smart Materials and Structures</i> , 2009 , 18, 055003	3.4	18
191	SHAPE MEMORY EFFECT AND CYCLIC DEFORMATION BEHAVIOR OF TIBIBIN ALLOYS. Functional Materials Letters, 2009 , 02, 79-82	1.2	34
190	Self-accommodation in TiNb shape memory alloys. <i>Acta Materialia</i> , 2009 , 57, 4054-4064	8.4	111
189	Shape memory behavior and internal structure of Tiblicu shape memory alloy thin films and their application for microactuators. <i>Acta Materialia</i> , 2009 , 57, 441-452	8.4	48
188	Shape memory behavior of Tilla and its potential as a high-temperature shape memory alloy. <i>Acta Materialia</i> , 2009 , 57, 1068-1077	8.4	162
187	Crystallization process and shape memory properties of TiNiZr thin films. <i>Acta Materialia</i> , 2009 , 57, 1920-1930	8.4	28
186	Cyclic deformation behavior of a Ti26 at.% Nb alloy. <i>Acta Materialia</i> , 2009 , 57, 2461-2469	8.4	87
185	Effect of ternary alloying elements on the shape memory behavior of Tilla alloys. <i>Acta Materialia</i> , 2009 , 57, 2509-2515	8.4	104
184	Effect of Nb Content on Deformation Textures and Mechanical Properties of Ti-18Zr-Nb Biomedical Alloys. <i>Materials Transactions</i> , 2009 , 50, 2721-2725	1.3	11
183	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. <i>Materials Transactions</i> , 2009 , 50, 2726-	217330	24
182	Development of high temperature Ti-Ta shape memory alloys 2009 ,		6

181	EFFECT OF ANNEALING ON SHAPE MEMORY CHARACTERISTICS OF Ti-50.85at.%Ni ALLOY. Functional Materials Letters, 2008 , 01, 209-213	1.2	6	
180	Effect of Zr Content on Shape Memory Characteristics and Workability of Ti-Ni-Zr Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 152-157	0.4	5	
179	Effect of Nb Content on Deformation Textures and Mechanical Properties of Ti-18Zr-Nb Biomedical Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 965-969	0.4	4	
178	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 503-509	0.4		
177	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 955-959	0.4	3	
176	Effect of Nb Content on Plastic Deformation Behavior and Deformation Textures of Ti-Nb-Zr-Ta-O Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 970-974	0.4	5	
175	High-strength superelastic Ti N i microtubes fabricated by sputter deposition. <i>Acta Materialia</i> , 2008 , 56, 2063-2072	8.4	10	
174	Interfacial defects in TiNb shape memory alloys. <i>Acta Materialia</i> , 2008 , 56, 3088-3097	8.4	77	
173	1014 Mechanical Properties of Ti-Mo Based Shape Memory Alloys. <i>The Proceedings of the JSME Annual Meeting</i> , 2008 , 2008.1, 41-42			
172	1003 Ti-Ni Superelastic Microtubes Fabricated by Sputter-deposition Method. <i>The Proceedings of the JSME Annual Meeting</i> , 2008 , 2008.1, 19-20			
171	1012 Effect of annealing temperature on the texture in wire of Ti-Nb-Al superelastic alloy. <i>The Proceedings of the JSME Annual Meeting</i> , 2008 , 2008.1, 37-38			
170	Rolling Texture of #Phase in Ti-22mol%Nb-3mol%Al Biomedical Shape Memory Alloy. <i>Materials Science Forum</i> , 2007 , 561-565, 1517-1520	0.4	2	
169	Effect of Rotation Speed on Transformation Behavior in Ti-48at%Ni Shape Memory Alloy Melt-Spun Ribbon. <i>Materials Science Forum</i> , 2007 , 561-565, 1481-1484	0.4	2	
168	Cytocompatibility Evaluation of Ti-Ni and Ti-Mo-Al System Shape Memory Alloys. <i>Materials Transactions</i> , 2007 , 48, 361-366	1.3	9	
167	Damping Capacity of Ti-Nb-Al Shape Memory β-Titanium Alloy with {001}β⟨110⟩β Texture. <i>Materials Transactions</i> , 2007 , 48, 395-399	1.3	7	
166	Effect of Boron Concentration on Martensitic Transformation Temperatures, Stress for Inducing Martensite and Slip Stress of Ti-24 mol%Nb-3 mol%Al Superelastic Alloy. <i>Materials Transactions</i> , 2007 , 48, 407-413	1.3	34	
165	Effect of Cu Addition on Shape Memory Behavior of Ti-18 mol%Nb Alloys. <i>Materials Transactions</i> , 2007 , 48, 414-421	1.3	18	
164	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. <i>Materials Transactions</i> , 2007 , 48, 367-372	1.3	5	

163	Martensitic Transformation and Superelasticity of Ti-Nb-Pt Alloys. <i>Materials Transactions</i> , 2007 , 48, 400)-406	41
162	Composition dependent crystallography of Amartensite in TiNb-based Litanium alloy. <i>Philosophical Magazine</i> , 2007 , 87, 3325-3350	1.6	127
161	TiNi-Base and Ti-Base Shape Memory Alloys. <i>Materials Science Forum</i> , 2007 , 561-565, 5-21	0.4	13
160	2107 Texture Formation of Ti-Nb-Al Shape Memory Alloys. <i>The Proceedings of the JSME Annual Meeting</i> , 2007 , 2007.1, 151-152		
159	2108 Superelastic Behavior of AuTi-18Co Alloys. <i>The Proceedings of the JSME Annual Meeting</i> , 2007 , 2007.1, 153-154		
158	Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire. <i>Angle Orthodontist</i> , 2006 , 76, 1041-6	2.6	28
157	Effect of Ti3Si on Texture in Ti-Nb Based Shape Memory Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 50		1
156	Microstructures of Ti-48%Ni shape memory melt-spun ribbons. <i>Transactions of Nonferrous Metals Society of China</i> , 2006 , 16, s92-s95	3.3	5
155	Microactuators Using R-phase Transformation of Sputter-deposited Ti-47.3Ni Shape Memory Alloy Thin Films. <i>Journal of Intelligent Material Systems and Structures</i> , 2006 , 17, 1049-1058	2.3	31
154	Effect of Annealing Temperature on Microstructure and Shape Memory Characteristics of Ti–22Nb–6Zr(at%) Biomedical Alloy. <i>Materials Transactions</i> , 2006 , 47, 505-512	1.3	64
153	X-ray Diffraction Analysis of Ti-18 mol%Nb Based Shape Memory Alloys Containing 3d Transition Metal Elements. <i>Materials Transactions</i> , 2006 , 47, 1209-1213	1.3	15
152	Effect of Nb Addition on Shape Memory Behavior of Ti–Mo–Ga Alloys. <i>Materials Transactions</i> , 2006 , 47, 518-522	1.3	12
151	Martensitic Transformation Behavior and Shape Memory Properties of Ti–Ni–Pt Melt-Spun Ribbons. <i>Materials Transactions</i> , 2006 , 47, 540-545	1.3	6
150	Texture and shape memory behavior of TiØ2NbØTa alloy. <i>Acta Materialia</i> , 2006 , 54, 423-433	8.4	221
149	Martensitic transformation, shape memory effect and superelasticity of TiNb binary alloys. <i>Acta Materialia</i> , 2006 , 54, 2419-2429	8.4	689
148	Effects of Si addition on superelastic properties of TiNbAl biomedical shape memory alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 835-838	5.3	25
147	Alloying process of sputter-deposited Ti/Ni multilayer thin films. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006 , 438-440, 699-702	5.3	29
146	Deformation-induced martensite stabilisation in [100] single-crystalline NiIIi. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 612	-6 ⁵ 18	35

145	Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti(2608) at.% Nb alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 839-843	5.3	87
144	Effects of short time heat treatment on superelastic properties of a TiNbAl biomedical shape memory alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 870-874	5.3	55
143	Effect of ageing on the transformation behaviour of Tians. Ni. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 617-621	5.3	28
142	Effect of Ta addition on shape memory behavior of Ti\(\mathbb{Z}\)2Nb alloy. <i>Materials Science &</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006 , 417, 120-128	5.3	151
141	Effects of ternary additions on martensitic transformation of TiAu. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 383-386	5.3	21
140	Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. <i>Materials Science & Discourse and Processing</i> , 2006 , 438-440, 18-24	5.3	283
139	Effect of boron addition on transformation behavior and tensile properties of Tiblo alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 830-834	5.3	9
138	Effect of {001}<110> texture on superelastic strain of TiNbAl biomedical shape memory alloys. Materials Science & Discrete Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 865-869	5.3	48
137	Effect of Alloy Composition on Lattice Deformation Strain of TiNbAl Biomedical Shape Memory Alloy. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2006 , 126, 164-165	0.2	1
136	209 Shape Memory Properties of TiAu High Temperature Shape Memory Alloys. <i>Proceedings of the 1992 Annual Meeting of JSME/MMD</i> , 2006 , 2006, 75-76		
135	216 Effect of Reduction Rate on Texture of Ti-26mol%Nb-3mol%Al. <i>Proceedings of the 1992 Annual Meeting of JSME/MMD</i> , 2006 , 2006, 89-90		
134	Pseudoelastic Properties of Cold-Rolled TiNbAl Alloy. <i>Materials Science Forum</i> , 2005 , 475-479, 2323-232	28 :.4	20
133	Anisotropy and Temperature Dependence of Young’s Modulus in Textured TiNbAl Biomedical Shape Memory Alloy. <i>Materials Transactions</i> , 2005 , 46, 1597-1603	1.3	71
132	ሚ????????. Keikinzoku/Journal of Japan Institute of Light Metals, 2005 , 55, 613-617	0.3	20
131	Effect of Low-Temperature Crystallization on Shape Memory Behavior and Microstructure of Sputter-Deposited Ti-Ni Amorphous Thin Films. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2005 , 69, 614-621	0.4	
130	Martensitic Transformation Behavior and Shape Memory Properties of Ti-Ni-Pt Melt Spun Ribbon. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 628-633	0.4	
129	Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys. <i>Materials Transactions</i> , 2005 , 46, 852-857	1.3	180
128	Shape memory characteristics of TiØ2Nb(PB)Zr(at.%) biomedical alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 403, 334-339	5.3	284

127	Mechanical properties of TiNb biomedical shape memory alloys containing Ge or Ga. <i>Materials Science and Engineering C</i> , 2005 , 25, 426-432	8.3	55
126	Fabrication and characterization of TiNi shape memory thin film using Ti/Ni multilayer technique. <i>Science and Technology of Advanced Materials</i> , 2005 , 6, 678-683	7.1	37
125	Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy. <i>Acta Materialia</i> , 2005 , 53, 4545-4554	8.4	138
124	Comparison of shape memory characteristics of a Ti-50.9 At. Pct Ni alloy aged at 473 and 673 K. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2005 , 36, 3301-331	∂ ^{.3}	13
123	Effect of Ni-Content on Shape Memory Behavior of Ti-Rich Ti-Ni Melt-Spun Ribbons. <i>Materials Science Forum</i> , 2005 , 475-479, 1925-1928	0.4	5
122	Characterization of High-Speed Microactuator Utilizing Shape Memory Alloy Thin Films. <i>Materials Science Forum</i> , 2005 , 475-479, 2037-2042	0.4	16
121	Mechanical Properties of Ti-Nb Biomedical Shape Memory Alloys Containing 13- and 14-Group Elements. <i>Materials Science Forum</i> , 2005 , 475-479, 2329-2332	0.4	13
120	Phase Constitution and Transformation Behavior of Ni2MnGa-Cu2MnAl Pseudobinary Intermetallic Compounds. <i>Materials Science Forum</i> , 2005 , 475-479, 841-844	0.4	1
119	Anisotropy in Elastic Properties of Textured TiNbAl Shape Memory Alloy. <i>Materials Science Forum</i> , 2005 , 475-479, 1983-1986	0.4	3
118	Shape Memory Behavior of NiMnGa/Epoxy Smart Composites. <i>Materials Science Forum</i> , 2005 , 475-479, 2067-2070	0.4	7
117	Thermodynamic analysis of ageing-induced multiple-stage transformation behaviour of NiTi. <i>Philosophical Magazine</i> , 2004 , 84, 2083-2102	1.6	40
116	Factors for Controlling Martensitic Transformation Temperature of TiNi Shape Memory Alloy by Addition of Ternary Elements. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 842, 150		3
115	Transformation Behavior of TiNiPt Thin Films Fabricated Using Melt Spinning Technique. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 842, 144		6
114	Martensitic transformation behavior in NiAl and NiAlRe melt-spun ribbons. <i>Scripta Materialia</i> , 2004 , 50, 237-241	5.6	13
113	A TiNiPd thin film microvalve for high temperature applications. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004 , 378, 205-209	5.3	51
112	Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. <i>Materials Science & Materials: Properties, Microstructure and Processing</i> , 2004 , 378, 86-91	5.3	10
111	Ageing-induced two-stage R-phase transformation in Ti 匝0.9at.%Ni. <i>Acta Materialia</i> , 2004 , 52, 487-499	8.4	165
110	Statistical analysis of soft and hard breakdown in 1.9-4.8-nm-thick gate oxides. <i>IEEE Electron Device Letters</i> , 2004 , 25, 305-307	4.4	4

109	Stress-induced FCC <-> HCP martensitic transformation in CoNi. <i>Journal of Alloys and Compounds</i> , 2004 , 368, 157-163	5.7	39
108	Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy. <i>Materials Transactions</i> , 2004 , 45, 1083-1089	1.3	91
107	Texture Analysis and Properties of Rapidly Solidified Ti52Ni38Cu10 Shape Memory Alloy. <i>Materials Transactions</i> , 2004 , 45, 208-213	1.3	13
106	Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy. <i>Materials Transactions</i> , 2004 , 45, 1077-1082	1.3	166
105	Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys. <i>Materials Transactions</i> , 2004 , 45, 1090-1095	1.3	115
104	Texture and Microstructure of Ti-Ni Melt-Spun Shape Memory Alloy Ribbons. <i>Materials Transactions</i> , 2004 , 45, 214-218	1.3	15
103	Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys. <i>Materials Transactions</i> , 2004 , 45, 2443-2448	1.3	268
102	Superelasticity and Mechanical Properties of Ti-Nb-Al Biomedical Alloy. <i>Proceedings of the 1992 Annual Meeting of JSME/MMD</i> , 2004 , 2004, 503-504		
101	Shape Memory Properties of NiMnGa Particles Dispersed Smart Composites. <i>Proceedings of the 1992 Annual Meeting of JSME/MMD</i> , 2004 , 2004, 497-498		
100	Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics. <i>European Physical Journal Special Topics</i> , 2003 , 112, 727-730		18
99	Fabrication of TiNi-based shape memory alloy thin films by simultaneous multi-target sputtering method. <i>European Physical Journal Special Topics</i> , 2003 , 112, 869-872		4
98	Phase Stability and Mechanical Properties of Ti-Ni Shape Memory Alloys Containing Platinum Group Metals. <i>Materials Science Forum</i> , 2003 , 426-432, 2333-2338	0.4	13
97	Mechanical Properties of Ti-Base Shape Memory Alloys. <i>Materials Science Forum</i> , 2003 , 426-432, 3121-3	31 <u>2.6</u>	56
96	DMA Evaluation of Damping Properties of Shape Memory Alloys. <i>The Proceedings of the JSME Annual Meeting</i> , 2003 , 2003.1, 255-256		
95	Probabilistic Estimation of the Degradation of Function and Strength of Ti-41.7Ni-8.5Cu (at%) Shape Memory Alloys under Thermo-Mechanical Cyclic Conditions. <i>Zairyo/Journal of the Society of Materials Science, Japan</i> , 2003 , 52, 174-179	0.1	
94	Thermomechanical behaviour of FCC<->HCP martensitic transformation in CoNi. <i>European Physical Journal Special Topics</i> , 2003 , 112, 1025-1028		2
93	Effect of Low-Temperature Aging on the R-Phase Transformation of a Ti-50.9at%Ni Alloy. <i>Materials Science Forum</i> , 2002 , 394-395, 225-228	0.4	4

91	Effect of Heat Treatment on the Properties of Ti-25Ni-25Cu (at%) SMA Melt-Spun Ribbons. <i>Materials Science Forum</i> , 2002 , 394-395, 495-498	0.4	3
90	Dynamic Characteristics of Diaphragm Microactuators Utilizing Sputter-Deposited TiNi Shape-Memory Alloy Thin Films. <i>Materials Science Forum</i> , 2002 , 394-395, 467-474	0.4	17
89	Hardness and Aging of Ni2MnGa Ferromagnetic Shape Memory Alloys. <i>Materials Transactions</i> , 2002 , 43, 852-855	1.3	14
88	Internal structures and shape memory properties of sputter-deposited thin films of a TiNiCu alloy. <i>Acta Materialia</i> , 2001 , 49, 1921-1928	8.4	14
87	Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. <i>Journal of Phase Equilibria and Diffusion</i> , 2001 , 22, 394-399		13
86	Characterization of phase transformations, long range order and thermal properties of Ni _{2} MnGa alloys. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2001 , 12, 9-17	0.4	13
85	Thermodynamic modeling of the recovery strains of sputter-deposited shape memory alloys TiNi and TiNiCu thin films. <i>Thin Solid Films</i> , 2000 , 372, 118-133	2.2	29
84	SMA microgripper with integrated antagonism. Sensors and Actuators A: Physical, 2000, 83, 208-213	3.9	107
83	Texture of TiNi rolled thin plates and sputter-deposited thin films. <i>International Journal of Plasticity</i> , 2000 , 16, 1135-1154	7.6	61
82	Phase equilibria in the pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 system. <i>Journal of Phase Equilibria and Diffusion</i> , 2000 , 21, 227-234		10
81	Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 2423-243	30 ^{2.3}	57
80	Stress-strain curves of sputter-deposited Ti-Ni thin films. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2000 , 80, 967-980		44
79	Effect of Ti Content on Nanometric Substructure and Shape Memory Property in Sputter-Deposited Ti-Rich Ti-Ni Thin Films. <i>Materials Science Forum</i> , 2000 , 327-328, 175-178	0.4	5
78	Cold rolling of B2 intermetallics. <i>Journal of Alloys and Compounds</i> , 2000 , 302, 266-273	5.7	13
77	Potential of IrAl base alloys as ultrahigh-temperature smart coatings. <i>Intermetallics</i> , 2000 , 8, 1081-1090	3.5	43
76	Development of stress-optimised shape memory microvalves. <i>Sensors and Actuators A: Physical</i> , 1999 , 72, 243-250	3.9	59
75	Anisotropy in microdevices produced by micromachining of cold-rolled NiTi sheets. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 270, 145-150	5.3	9
74	Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Materials Science & Description of the Science and Processing 1999, 273-275, 106-133	5.3	340

73	Fatigue life of TiBO at.% Ni and TiBONiBOCu (at.%) shape memory alloy wires. <i>Materials Science</i> & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999 , 273-275, 658-	653	184
72	Analysis of the thermomechanical behavior of TiNi shape memory alloy thin films by bulging and nanoindentation procedures. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 273-275, 727-732	5.3	35
71	High strength TiNi-based shape memory thin films. <i>Materials Science & Dine Bineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 273-275, 745-748	5.3	25
70	Mechanical properties of TiNi shape memory thin films formed by sputtering. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 754-	757	44
69	Effect of rolling reduction on the deformation texture and anisotropy of transformation strain in TiBO.2at.%Ni thin plates. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 273-275, 758-762	5.3	13
68	Effect of heat-treatment on the texture and anisotropy of transformation strain in TiNiBe rolled thin plates. <i>Materials Science & Discourse and Processing</i> , 1999 , 273-275, 763-768	5.3	7
67	Shape memory microvalves based on thin films or rolled sheets. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 784-788	5.3	71
66	Strain dependence of pseudoelastic hysteresis of NiTi. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1999 , 30, 1275-1282	2.3	41
65	Microstructure and Mechanical Properties of Sputter-Deposited Ti-Ni Alloy Thin Films. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 1999 , 121, 2-8	1.8	26
64	Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites. <i>Journal of Materials Science</i> , 1998 , 33, 3763-3783	4.3	196
63	Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of Materials Science, 1998 , 33, 3743-3762	4.3	418
62	Deformation behaviour associated with the stress-induced martensitic transformation in Ti N i thin films and their thermodynamical modelling. <i>Thin Solid Films</i> , 1998 , 324, 184-189	2.2	30
61	Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni. <i>Thin Solid Films</i> , 1998 , 315, 305-309	2.2	29
60	Ti-content and annealing temperature dependence of deformation characteristics of TiXNi(92X)Cu8 shape memory alloys. <i>Acta Materialia</i> , 1998 , 46, 2729-2740	8.4	19
59	Recent developments in TiNi-based shape memory alloys 1998,		3
58	Recent Developments in Sputter-Deposited Ti-Ni-Base Shape Memory Alloy Thin Films. <i>European Physical Journal Special Topics</i> , 1997 , 07, C5-275-C5-280		5
57	Coherent Subnanometric Plate Precipitates Formed during Crystallization of As-Sputtered Ti-Ni films. <i>European Physical Journal Special Topics</i> , 1997 , 07, C5-221-C5-226		2
56	Microstructure of Ti-48.2 at. Pct Ni shape memory thin films. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1997 , 28, 1985-1991	2.3	65

55	Unique crystallization process in sputter-deposited ti-ni shape memory films. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 53-5	5 ^{5.3}	3
54	Ti-content and annealing temperature dependence of transformation behavior of TiXNi(92-XCu8 shape memory alloys. <i>Materials Science & Discontinuo A: Structural Materials: Properties, Microstructure and Processing</i> , 1997 , 230, 132-138	5.3	9
53	Ti-content dependence of transformation pseudoelastivity characteristics of TixNi(92🛭)Cu8 shape memory alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1997 , 237, 79-86	5.3	10
52	Stress-Optimised Shape Memory Devices for the Use in Microvalves. <i>European Physical Journal Special Topics</i> , 1997 , 07, C5-597-C5-602		3
51	Formation of nanocrystals with an identical orientation in sputter-deposited Ti Ni thin films. <i>Philosophical Magazine Letters</i> , 1996 , 74, 395-404	1	38
50	Strengthening of Ti-Ni shape-memory films by coherent subnanometric plate precipitates. <i>Philosophical Magazine Letters</i> , 1996 , 74, 137-144	1	81
49	Effect of aging on shape memory behavior of Ti-51.3 At. pct ni thin films. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1996 , 27, 3753-3759	2.3	48
48	Effect of mechanical cycling on the pseudoelasticity characteristics of Ti?Ni and Ti?Ni?Cu alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 203, 187-196	5.3	118
47	Shape memory characteristics of sputter-deposited Ti-Ni-base thin films 1995 , 2441, 156		10
46	Stability of shape memory characteristics against cyclic deformation in Ti-Ni sputter-deposited thin films 1995 ,		3
45	Effect of Heat Treatment on Shape Memory Behavior of Ti-rich Ti–Ni Thin Films. <i>Materials Transactions, JIM</i> , 1995 , 36, 1349-1355		67
44	Cyclic stress-strain characteristics of Ti?Ni and Ti?Ni?Cu shape memory alloys. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 202, 148-156	5.3	119
43	Shape Memory Characteristics of Sputter-Deposited Ti–Ni Thin Films. <i>Materials Transactions, JIM</i> , 1994 , 35, 14-19		50
42	Origin of As temperature increase by predeformation in Ti-Ni alloys 1994 , 1085-1088		1
41	The Surface and Interface of Shape Memory Alloys <i>Hyomen Kagaku</i> , 1994 , 15, 467-472		
40	Mechanism of the As Temperature Increase by Pre-deformation in Thermoelastic Alloys. <i>Materials Transactions, JIM</i> , 1993 , 34, 919-929		179
39	Shape memory thin film of Ti?Ni formed by sputtering. <i>Thin Solid Films</i> , 1993 , 228, 210-214	2.2	112
38	Intrinsic thermal-mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1993 , 167, 51-56	5.3	58

37	Effects of shot-peening on surface contact angles of biomaterials. <i>Journal of Materials Science:</i> Materials in Medicine, 1993 , 4, 443-447	4.5	25
36	Effects of Nb Addition on the Microstructure of Ti–Ni Alloys. <i>Materials Transactions, JIM</i> , 1992 , 33, 337-345		109
35	Characteristics of Deformation and Transformation in Ti44Ni47Nb9 Shape Memory Alloy. <i>Materials Transactions, JIM</i> , 1992 , 33, 346-353		64
34	Changes in contact angles as a function of time on some pre-oxidized biomaterials. <i>Journal of Materials Science: Materials in Medicine</i> , 1992 , 3, 306-312	4.5	41
33	Corrosion and Biocompatibility of Shape Memory Alloys. <i>Zairyo To Kankyo/ Corrosion Engineering</i> , 1991 , 40, 834-844	0.5	60
32	Effects of Several Factors on the Ductility of the Ti-Ni Alloy. <i>Materials Science Forum</i> , 1991 , 56-58, 765-77	Q 4	34
31	Crystal Structure of γ2′ Martensite in Au-47.5 at%Cd Alloy. <i>Materials Transactions, JIM</i> , 1990 , 31, 12-17		33
30	The shape memory mechanism associated with the martensitic transformation in Ti?Ni alloysII Self-accommodation. <i>Acta Metallurgica</i> , 1989 , 37, 1873-1884		196
29	The shape memory mechanism associated with the martensitic transformation in Ti?Ni alloysII. Variant coalescence and shape recovery. <i>Acta Metallurgica</i> , 1989 , 37, 1885-1890		80
28	Unusual strain recovery in 🛭? martensite single variant of Cu?Al?Ni alloy. <i>Scripta Metallurgica</i> , 1989 , 23, 1329-1334		4
27	Development of shape memory alloys ISIJ International, 1989 , 29, 353-377	1.7	388
26	Morphological changes associated with the R-phase and martensitic transformations in Ti-Ni single crystals <i>ISIJ International</i> , 1989 , 29, 423-429	1.7	13
25	The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. <i>Acta Metallurgica</i> , 1988 , 36, 181-192		153
24	Orientation dependence of 🛘 -> 🗓? stress-induced martensitic transformation in a Cu-Al-Ni alloy. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1988 , 19, 915-923		94
23	Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50 at.% Ni single crystals. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1988 , 57, 467-478		105
22	Crystallography of martensitic transformation in Ti?Ni single crystals. <i>Acta Metallurgica</i> , 1987 , 35, 2137-2	144	187
21	Effect of thermal cycling on the transformation temperatures of Ti?Ni alloys. <i>Acta Metallurgica</i> , 1986 , 34, 2045-2051		366
20	Deformation and transition behavior associated with theR-phase in Ti-Ni alloys. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1986 , 17, 53-63		362

19	Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1986 , 17, 115-120	506
18	Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method. <i>Acta Metallurgica</i> , 1985 , 33, 2049-2056	341
17	Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1985 , 50, 393-408	100
16	The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals. <i>Scripta Metallurgica</i> , 1984 , 18, 883-888	142
15	Stress-induced martensitic transformation in a Ti-Ni single crystal. <i>Scripta Metallurgica</i> , 1983 , 17, 987-992	45
14	Shape memory effect and pseudoelasticity in a Ti?Ni single crystal. <i>Scripta Metallurgica</i> , 1983 , 17, 1057-1062	55
13	Orientation dependence of the deformation modes in a IP martensite single crystal in Cu?Al?Ni alloy. <i>Scripta Metallurgica</i> , 1983 , 17, 745-750	17
12	On the origin of intergranular fracture in Iphase shape memory alloys. <i>Scripta Metallurgica</i> , 1982 , 16, 431-436	63
11	CHARACTERISTICS OF DEFORMATION AND TRANSFORMATION PSEUDOELASTICITY IN Ti-Ni ALLOYS. <i>Journal De Physique Colloque</i> , 1982 , 43, C4-255-C4-260	63
10	STUDY OF FRACTURE IN Cu-Al-Ni SHAPE MEMORY BICRYSTALS. <i>Journal De Physique Colloque</i> , 1982 , 43, C4-813-C4-818	4
9	Lders-like deformation observed in the transformation pseudoelasticity of a Ti?Ni alloy. <i>Scripta Metallurgica</i> , 1981 , 15, 853-856	90
8	Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy. <i>Scripta Metallurgica</i> , 1981 , 15, 287-292	396
7	Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu?Al alloy. <i>Scripta Metallurgica</i> , 1979 , 13, 447-449	51
6	Dynamic Observation of the Process of Lüders Band Formation in Polycrystalline Iron. <i>Transactions of the Japan Institute of Metals</i> , 1979 , 20, 603-608	7
5	Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. <i>Acta Metallurgica</i> , 1979 , 27, 855-862	209
4	Lders deformation in polycrystalline iron. <i>Acta Metallurgica</i> , 1978 , 26, 1273-1281	56
3	Effects of Grain Size and Specimen Thickness on Mechanical Properties of Polycrystalline Copper and Copper-Aluminum Alloy. <i>Transactions of the Japan Institute of Metals</i> , 1978 , 19, 438-444	16
2	Fabrication and characterization of sputter-deposited TiNi superelastic microtubes385-402	

LIST OF PUBLICATIONS

Antiphase Boundary Like Defect Inside & Martensite in Ti-Nb-Al Shape Memory Alloy335-340