Alain Faivre-chauvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer radioimmunotherapy with alpha-emitting nuclides. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 601-614.	6.4	148
2	Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1049-1062.	6.4	113
3	Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 1311-labeled bivalent hapten in a phase I optimization clinical trial. Journal of Nuclear Medicine, 2006, 47, 247-55.	5.0	88
4	Phase II Trial of Anticarcinoembryonic Antigen Pretargeted Radioimmunotherapy in Progressive Metastatic Medullary Thyroid Carcinoma: Biomarker Response and Survival Improvement. Journal of Nuclear Medicine, 2012, 53, 1185-1192.	5.0	74
5	Antitumor Immunity Induced after α Irradiation. Neoplasia, 2014, 16, 319-328.	5.3	71
6	Radioimmunoconjugates for the Treatment of Cancer. Seminars in Oncology, 2014, 41, 613-622.	2.2	65
7	Radiolabeled Antibodies for Cancer Imaging and Therapy. Methods in Molecular Biology, 2012, 907, 681-697.	0.9	61
8	Immuno-PET Using Anticarcinoembryonic Antigen Bispecific Antibody and ⁶⁸ Ga-Labeled Peptide in Metastatic Medullary Thyroid Carcinoma: Clinical Optimization of the Pretargeting Parameters in a First-in-Human Trial. Journal of Nuclear Medicine, 2016, 57, 1505-1511.	5.0	61
9	Comparison of the biologic effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer, 2002, 94, 1202-1209.	4.1	60
10	Tumor Immunotargeting Using Innovative Radionuclides. International Journal of Molecular Sciences, 2015, 16, 3932-3954.	4.1	51
11	Immuno-PET for Clinical Theranostic Approaches. International Journal of Molecular Sciences, 2017, 18, 57.	4.1	50
12	Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients. Tumor Biology, 2012, 33, 679-688.	1.8	48
13	Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. EJNMMI Research, 2011, 1, 20.	2.5	44
14	Guidance on current good radiopharmacy practice for the smallâ€scale preparation of radiopharmaceuticals using automated modules: a European perspective. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 615-620.	1.0	44
15	Single-Dose Anti-CD138 Radioimmunotherapy: Bismuth-213 is More Efficient than Lutetium-177 for Treatment of Multiple Myeloma in a Preclinical Model. Frontiers in Medicine, 2015, 2, 76.	2.6	41
16	A pretargeting system for tumor PET imaging and radioimmunotherapy. Frontiers in Pharmacology, 2015, 6, 54.	3.5	41
17	Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 6.	3.9	41
18	Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clinical Cancer Research, 2003, 9, 3973S-81S.	7.0	37

Alain Faivre-chauvet

#	Article	IF	CITATIONS
19	Radiolabeling of HTE1PA: A new monopicolinate cyclam derivative for Cu-64 phenotypic imaging. In vitro and in vivo stability studies in mice. Nuclear Medicine and Biology, 2014, 41, e49-e57.	0.6	36
20	90 Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study. Lancet Haematology,the, 2015, 2, e108-e117.	4.6	36
21	Combining α-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction. PLoS ONE, 2015, 10, e0130249.	2.5	33
22	New synthesis of phenyl-isothiocyanate C-functionalised cyclams. Bioconjugation and ⁶⁴ Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative. Organic and Biomolecular Chemistry, 2015, 13, 11302-11314.	2.8	32
23	EANM guideline for the preparation of an Investigational Medicinal Product Dossier (IMPD). European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2175-2185.	6.4	31
24	Radioimmunotherapy for Treatment of Acute Leukemia. Seminars in Nuclear Medicine, 2016, 46, 135-146.	4.6	31
25	Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Molecular Cancer Therapeutics, 2002, 1, 267-74.	4.1	31
26	Radioimmunotherapy of B-cell non-Hodgkin's lymphoma. Frontiers in Oncology, 2013, 3, 177.	2.8	30
27	High-Activity Radio-Iodine Labeling of Conventional and Stealth Liposomes. Journal of Liposome Research, 2006, 16, 91-102.	3.3	29
28	Pharmacokinetics and Dosimetry Studies for Optimization of Pretargeted Radioimmunotherapy in CEA-Expressing Advanced Lung Cancer Patients. Frontiers in Medicine, 2015, 2, 84.	2.6	29
29	Comparison of Immuno-PET of CD138 and PET imaging with 64CuCl2 and 18F-FDG in a preclinical syngeneic model of multiple myeloma. Oncotarget, 2018, 9, 9061-9072.	1.8	29
30	Use of multi-cell spheroids of ovarian carcinoma as an intraperitoneal radio-immunotherapy model: Uptake, retention kinetics and dosimetric evaluation. International Journal of Cancer, 1992, 50, 984-991.	5.1	28
31	Radioimmunoconjugates for treating cancer: recent advances and current opportunities. Expert Opinion on Biological Therapy, 2017, 17, 813-819.	3.1	27
32	H2Me-do2pa: an attractive chelator with fast, stable and inert ^{nat} Bi ³⁺ and ²¹³ Bi ³⁺ complexation for potential α-radioimmunotherapy applications. Chemical Communications, 2014, 50, 12371-12374.	4.1	26
33	Toxicity and efficacy of combined radioimmunotherapy and bevacizumab in a mouse model of medullary thyroid carcinoma. Cancer, 2010, 116, 1053-1058.	4.1	25
34	Pretargeted radioimmunotherapy of colorectal cancer metastases: models and pharmacokinetics predict influence of the physical and radiochemical properties of the radionuclide. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 2153-2164.	6.4	25
35	What is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between 89Zr- and 64Cu-Labeled Anti-CD138 in a Preclinical Syngeneic Model. International Journal of Molecular Sciences, 2019, 20, 2564.	4.1	22
36	Does immunoscintigraphy serve clinical needs effectively? Is there a future for radioimmunotherapy?. European Journal of Nuclear Medicine and Molecular Imaging, 1992, 19, 205-13.	2.1	21

#	Article	IF	CITATIONS
37	Feasibility of the radioastatination of a monoclonal antibody with astatine \hat{e} 211 purified by wet extraction. Journal of Labelled Compounds and Radiopharmaceuticals, 2008, 51, 379-383.	1.0	21
38	Ionic liquid supported organotin reagents to prepare molecular imaging and therapy agents. Organic and Biomolecular Chemistry, 2016, 14, 2121-2126.	2.8	21
39	Synthesis of <i>C</i> -functionalized TE1PA and comparison with its analogues. An example of bioconjugation on 9E7.4 mAb for multiple myeloma ⁶⁴ Cu-PET imaging. Organic and Biomolecular Chemistry, 2018, 16, 4261-4271.	2.8	21
40	Clinical Results in Medullary Thyroid Carcinoma Suggest High Potential of Pretargeted Immuno-PET for Tumor Imaging and Theranostic Approaches. Frontiers in Medicine, 2019, 6, 124.	2.6	20
41	Binding Activities and Antitumor Properties of a New Mouse/Human Chimeric Antibody Specific for GD2 Ganglioside Antigen. Clinical Cancer Research, 2007, 13, 5613s-5620s.	7.0	19
42	Comparative Toxicity and Efficacy of Combined Radioimmunotherapy and Antiangiogenic Therapy in Carcinoembryonic Antigen–Expressing Medullary Thyroid Cancer Xenograft. Journal of Nuclear Medicine, 2010, 51, 624-631.	5.0	19
43	Bifunctional Antibodies for Radioimmunotherapy. Hybridoma, 1995, 14, 125-128.	0.6	18
44	Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 901-909.	6.4	18
45	TE1PA as Innovating Chelator for 64Cu Immuno-TEP Imaging: A Comparative in Vivo Study with DOTA/NOTA by Conjugation on 9E7.4 mAb in a Syngeneic Multiple Myeloma Model. Bioconjugate Chemistry, 2019, 30, 2393-2403.	3.6	18
46	Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single-step method for the radioiodination and astatination of antibodies. Chemical Science, 2021, 12, 1458-1468.	7.4	18
47	Pharmacokinetics and biodistribution of samarium-153-labelled OC125 antibody coupled to CITCDTPA in a xenograft model of ovarian cancer. European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 560-567.	2.1	17
48	The intraportal injection model for liver metastasis. Nuclear Medicine Communications, 2011, 32, 147-154.	1.1	17
49	Therapeutic Efficacy of Alpha-RIT Using a 213Bi-Anti-hCD138 Antibody in a Mouse Model of Ovarian Peritoneal Carcinomatosis. Frontiers in Medicine, 2015, 2, 88.	2.6	17
50	Cyclam te1pa for ⁶⁴ Cu PET imaging. Bioconjugation to antibody, radiolabeling and preclinical application in xenografted colorectal cancer. RSC Advances, 2017, 7, 9272-9283.	3.6	15
51	Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC). Tumor Biology, 2012, 33, 601-606.	1.8	14
52	Cyclam-Based Chelators Bearing Phosphonated Pyridine Pendants for ⁶⁴ Cu-PET Imaging: Synthesis, Physicochemical Studies, Radiolabeling, and Bioimaging. Inorganic Chemistry, 2021, 60, 2634-2648.	4.0	13
53	Synthesis of a novel bifunctional chelating agent for actinium complexation. Tetrahedron Letters, 2000, 41, 7207-7209.	1.4	12
54	Unprecedented incorporation of α-emitter radioisotope 213Bi into porphyrin chelates with reference to a daughter isotope mediated assistance mechanism. Chemical Communications, 2011, 47, 8554.	4.1	12

Alain Faivre-Chauvet

#	Article	IF	CITATIONS
55	Anti-CEA Pretargeted Immuno-PET Shows Higher Sensitivity Than DOPA PET/CT in Detecting Relapsing Metastatic Medullary Thyroid Carcinoma: Post Hoc Analysis of the iPET-MTC Study. Journal of Nuclear Medicine, 2021, 62, 1221-1227.	5.0	12
56	Sensitivity of pretargeted immunoPET using 68Ga-peptide to detect colonic carcinoma liver metastases in a murine xenograft model: Comparison with 18FDG PET-CT. Oncotarget, 2018, 9, 27502-27513.	1.8	12
57	Influence of trans-1,2-diaminocyclohexane structure and mixed carboxylic/phosphonic group combinations on samarium-153 chelation capacity and stability. European Journal of Medicinal Chemistry, 2004, 39, 467-472.	5.5	11
58	Comparative targeting of human colon-carcinoma multicell spheroids using one- and two-step (bispecific antibody) techniques. , 1996, 67, 883-891.		10
59	Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer. Annals of Nuclear Medicine, 2000, 14, 173-179.	2.2	10
60	Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery. Journal of Drug Delivery, 2011, 2011, 1-9.	2.5	10
61	Radioiodinated and astatinated NHC rhodium complexes: Synthesis. Nuclear Medicine and Biology, 2014, 41, e23-e29.	0.6	10
62	Alpha Particles Induce Autophagy in Multiple Myeloma Cells. Frontiers in Medicine, 2015, 2, 74.	2.6	7
63	Improvement of the Targeting of Radiolabeled and Functionalized Liposomes with a Two-Step System Using a Bispecific Monoclonal Antibody (Anti-CEA × Anti-DTPA–In). Frontiers in Medicine, 2015, 2, 8	3. ^{2.6}	7
64	Synthesis and evaluation of a novel samarium-153 bifunctional chelating agent for radioimmunotargeting applications. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 109-123.	1.0	6
65	Purification of [18F]-fluoro-l-thymidine ([18F]-FLT) for positron emission tomography imaging. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 154-157.	2.8	6
66	Efficient synthesis of new tetradentate ligands with potential applications for 64Cu PET-imaging. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 924-927.	2.2	5
67	A simple and efficient method to label l-fucose. Tetrahedron Letters, 2006, 47, 6869-6873.	1.4	2
68	Copper-64-Labeled 1C1m-Fc, a New Tool for TEM-1 PET Imaging and Prediction of Lutetium-177-Labeled 1C1m-Fc Therapy Efficacy and Safety. Cancers, 2021, 13, 5936.	3.7	2
69	ARRONAX Cyclotron: Setting up of In-House Hospital Radiopharmacy. BioMed Research International, 2020, 2020, 1-6.	1.9	1
70	Abstract P5-01-01: Pretargeted immuno-PET with an anti-carcinoembryonic antigen (CEA) bispecific antibody (BsMAb) and a68Ga-labeled hapten-peptide compared to conventional imaging and FDG-PET in metastatic breast cancer patients (BC): First results. , 2015, , .		1
71	Efficient Synthesis of a New Potential Chelating Agent for Radioimmunotherapy. Synlett, 2002, 2002, 2080-2082.	1.8	0
72	Abstract A53: Alpha particles and induction of an antitumor immune response , 2013, , .		0

0

#	Article	IF	CITATIONS
73	Improvement in imaging of metastatic breast cancer (BC) with a novel pretargeted immuno-PET targeting CEA: First clinical results Journal of Clinical Oncology, 2015, 33, 11059-11059.	1.6	0

74 Radionuclide Metabolic Therapy. , 2013, , .