
Massimo Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023277/publications.pdf Version: 2024-02-01

MASSIMO LODES

#	Article	IF	CITATIONS
1	MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Reports, 2022, 39, 110879.	6.4	13
2	Direct R-Loop Visualization on Genomic DNA by Native Automated Electron Microscopy. Methods in Molecular Biology, 2022, , 1-20.	0.9	2
3	PrimPolâ€mediated repriming facilitates replication traverse of DNA interstrand crosslinks. EMBO Journal, 2021, 40, e106355.	7.8	40
4	TARG1 protects against toxic DNA ADP-ribosylation. Nucleic Acids Research, 2021, 49, 10477-10492.	14.5	19
5	Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops. Molecular Cell, 2020, 77, 528-541.e8.	9.7	99
6	Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nature Communications, 2020, 11, 3531.	12.8	63
7	The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nature Reviews Molecular Cell Biology, 2020, 21, 633-651.	37.0	198
8	HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Molecular Cell, 2020, 78, 1237-1251.e7.	9.7	125
9	CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage. EMBO Reports, 2020, 21, e48920.	4.5	26
10	Human RIF1-Protein Phosphatase 1 Prevents Degradation and Breakage of Nascent DNA on Replication Stalling. Cell Reports, 2019, 27, 2558-2566.e4.	6.4	54
11	Rif1 Binding and Control of Chromosome-Internal DNA Replication Origins Is Limited by Telomere Sequestration. Cell Reports, 2018, 23, 983-992.	6.4	39
12	Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy. Methods in Molecular Biology, 2018, 1672, 261-294.	0.9	37
13	ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Reports, 2018, 24, 2629-2642.e5.	6.4	100
14	Tel1/ <scp>ATM</scp> prevents degradation of replication forks that reverse after topoisomerase poisoning. EMBO Reports, 2018, 19, .	4.5	25
15	Histone Ubiquitination by the DNA Damage Response Is Required for Efficient DNA Replication in Unperturbed S Phase. Molecular Cell, 2018, 71, 897-910.e8.	9.7	78
16	Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell, 2018, 33, 1078-1093.e12.	16.8	238
17	Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophysical Chemistry, 2017, 225, 3-9.	2.8	31
18	Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nature Communications, 2017, 8, 859.	12.8	286

MASSIMO LOPES

#	Article	IF	CITATIONS
19	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	16.8	122
20	Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Molecular Cell, 2017, 67, 882-890.e5.	9.7	190
21	Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell, 2017, 21, 225-240.e5.	11.1	210
22	The MMS22L–TONSL heterodimer directly promotes RAD51â€dependent recombination upon replication stress. EMBO Journal, 2016, 35, 2584-2601.	7.8	64
23	Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nature Cell Biology, 2016, 18, 777-789.	10.3	244
24	Nascent DNA Proteomics Reveals a Chromatin Remodeler Required for Topoisomerase I Loading at Replication Forks. Cell Reports, 2016, 15, 300-309.	6.4	51
25	A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nature Communications, 2016, 7, 10660.	12.8	149
26	Poly(ADP-Ribosyl) Glycohydrolase Prevents the Accumulation of Unusual Replication Structures during Unperturbed S Phase. Molecular and Cellular Biology, 2015, 35, 856-865.	2.3	42
27	Replication fork reversal in eukaryotes: from dead end to dynamic response. Nature Reviews Molecular Cell Biology, 2015, 16, 207-220.	37.0	406
28	Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. Journal of Cell Biology, 2015, 208, 563-579.	5.2	549
29	DNA2 drives processing and restart of reversed replication forks in human cells. Journal of Cell Biology, 2015, 208, 545-562.	5.2	280
30	Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polî±/Primase/Ctf4 Complex. Molecular Cell, 2015, 57, 812-823.	9.7	129
31	FBH1 Catalyzes Regression of Stalled Replication Forks. Cell Reports, 2015, 10, 1749-1757.	6.4	90
32	Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA. PLoS Genetics, 2015, 11, e1005384.	3.5	37
33	Visualization and Interpretation of Eukaryotic DNA Replication Intermediates In Vivo by Electron Microscopy. Methods in Molecular Biology, 2014, 1094, 177-208.	0.9	63
34	Combined Bidimensional Electrophoresis and Electron Microscopy to Study Specific Plasmid DNA Replication Intermediates in Human Cells. Methods in Molecular Biology, 2014, 1094, 209-219.	0.9	8
35	New histone supply regulates replication fork speed and PCNA unloading. Journal of Cell Biology, 2014, 204, 29-43.	5.2	132
36	Visualization of recombination-mediated damage bypass by template switching. Nature Structural and Molecular Biology, 2014, 21, 884-892.	8.2	124

MASSIMO LOPES

#	Article	IF	CITATIONS
37	Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nature Structural and Molecular Biology, 2013, 20, 486-494.	8.2	82
38	Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes and Development, 2013, 27, 2537-2542.	5.9	80
39	Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nature Structural and Molecular Biology, 2013, 20, 347-354.	8.2	370
40	Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. Journal of Cell Biology, 2013, 200, 699-708.	5.2	166
41	Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Molecular Cell, 2012, 47, 669-680.	9.7	132
42	Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nature Structural and Molecular Biology, 2012, 19, 417-423.	8.2	408
43	Carcinogenic bacterial pathogen <i>Helicobacter pylori</i> triggers DNA double-strand breaks and a DNA damage response in its host cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14944-14949.	7.1	262
44	14-3-3 Proteins Regulate Exonuclease 1–Dependent Processing of Stalled Replication Forks. PLoS Genetics, 2011, 7, e1001367.	3.5	45
45	Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nature Structural and Molecular Biology, 2010, 17, 1305-1311.	8.2	453
46	Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation. Molecular Cell, 2010, 40, 50-62.	9.7	99
47	Electron Microscopy Methods for Studying In Vivo DNA Replication Intermediates. Methods in Molecular Biology, 2009, 521, 605-631.	0.9	29
48	Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes and Development, 2007, 21, 3342-3355.	5.9	150
49	Multiple Mechanisms Control Chromosome Integrity after Replication Fork Uncoupling and Restart at Irreparable UV Lesions. Molecular Cell, 2006, 21, 15-27.	9.7	515
50	Methods to Study Replication Fork Collapse in Budding Yeast. Methods in Enzymology, 2006, 409, 442-462.	1.0	37
51	Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes and Development, 2005, 19, 339-350.	5.9	287
52	Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells. Molecular Cell, 2005, 17, 153-159.	9.7	234
53	Pol12, the B subunit of DNA polymerase Â, functions in both telomere capping and length regulation. Genes and Development, 2004, 18, 992-1006.	5.9	123
54	Branch Migrating Sister Chromatid Junctions Form at Replication Origins through Rad51/Rad52-Independent Mechanisms. Molecular Cell, 2003, 12, 1499-1510.	9.7	107

MASSIMO LOPES

#	Article	IF	CITATIONS
55	Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects. Science, 2002, 297, 599-602.	12.6	756
56	The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412, 557-561.	27.8	693
57	DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 187-196.	1.0	110
58	Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO Journal, 1999, 18, 6561-6572.	7.8	354
59	Fork Slowing and Reversal as an Adaptive Response to Chronic ATR Inhibition. SSRN Electronic Journal, O, , .	0.4	0