Isolda Romero Canelon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation. Inorganic Chemistry, 2013, 52, 12276-12291.	1.9	347
2	The Potent Oxidant Anticancer Activity of Organoiridium Catalysts. Angewandte Chemie - International Edition, 2014, 53, 3941-3946.	7.2	283
3	Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nature Communications, 2015, 6, 6582.	5.8	216
4	The Contrasting Activity of Iodido versus Chlorido Ruthenium and Osmium Arene Azo- and Imino-pyridine Anticancer Complexes: Control of Cell Selectivity, Cross-Resistance, p53 Dependence, and Apoptosis Pathway. Journal of Medicinal Chemistry, 2013, 56, 1291-1300.	2.9	199
5	Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature Chemistry, 2018, 10, 347-354.	6.6	173
6	Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis. ACS Chemical Biology, 2013, 8, 1335-1343.	1.6	137
7	Designing Ruthenium Anticancer Drugs: What Have We Learnt from the Key Drug Candidates?. Inorganics, 2019, 7, 31.	1.2	117
8	Supramolecular Photoactivatable Anticancer Hydrogels. Journal of the American Chemical Society, 2017, 139, 5656-5659.	6.6	112
9	Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands. Organometallics, 2015, 34, 2683-2694.	1.1	110
10	Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C ^{â^§} N-Chelated and Pyridine Ligands. Organometallics, 2014, 33, 5324-5333.	1.1	109
11	Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorganic Chemistry Frontiers, 2016, 3, 1058-1064.	3.0	101
12	Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation. Journal of Medicinal Chemistry, 2015, 58, 7874-7880.	2.9	74
13	Cyclic Peptide–Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes. Biomacromolecules, 2018, 19, 239-247.	2.6	74
14	Discovery and Biosynthesis of Gladiolin: A <i>Burkholderia gladioli</i> Antibiotic with Promising Activity against <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2017, 139, 7974-7981.	6.6	73
15	Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3800-5.	3.3	71
16	Inâ€Cell Activation of Organoâ€Osmium(II) Anticancer Complexes. Angewandte Chemie - International Edition, 2017, 56, 1017-1020.	7.2	68
17	Synchrotron Xâ€Ray Fluorescence Nanoprobe Reveals Target Sites for Organoâ€Osmium Complex in Human Ovarian Cancer Cells. Chemistry - A European Journal, 2017, 23, 2512-2516.	1.7	67
18	Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity. Organometallics, 2018, 37, 891-899.	1.1	63

#	Article	IF	CITATIONS
19	Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes. Metallomics, 2012, 4, 1271.	1.0	60
20	Comparative Cytotoxicity of Artemisinin and Cisplatin and Their Interactions with Chlorogenic Acids in MCF7 Breast Cancer Cells. ChemMedChem, 2014, 9, 2791-2797.	1.6	58
21	Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells. Metallomics, 2014, 6, 1014.	1.0	54
22	Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD+ and pyruvate, and antiproliferative activity. Journal of Inorganic Biochemistry, 2015, 153, 322-333.	1.5	54
23	A novel dual-functioning ruthenium(II)–arene complex of an anti-microbial ciprofloxacin derivative — Anti-proliferative and anti-microbial activity. Journal of Inorganic Biochemistry, 2016, 160, 210-217.	1.5	54
24	Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics, 2018, 37, 1555-1566.	1.1	49
25	Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chemical Science, 2017, 8, 8271-8278.	3.7	46
26	<i>In Vivo</i> Selectivity and Localization of Reactive Oxygen Species (ROS) Induction by Osmium Anticancer Complexes That Circumvent Platinum Resistance. Journal of Medicinal Chemistry, 2018, 61, 9246-9255.	2.9	44
27	Pharmaco-genomic investigations of organo-iridium anticancer complexes reveal novel mechanism of action. Metallomics, 2018, 10, 93-107.	1.0	39
28	The potent anti-cancer activity of Dioclea lasiocarpa lectin. Journal of Inorganic Biochemistry, 2017, 175, 179-189.	1.5	34
29	New activation mechanism for half-sandwich organometallic anticancer complexes. Chemical Science, 2018, 9, 3177-3185.	3.7	34
30	Palladium(<scp>ii</scp>) complexes with thiosemicarbazones derived from pyrene as topoisomerase IB inhibitors. Dalton Transactions, 2019, 48, 16509-16517.	1.6	34
31	Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discussions, 2014, 175, 229-240.	1.6	33
32	Systems approach to metal-based pharmacology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4187-4188.	3.3	33
33	The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Transactions, 2016, 45, 8367-8378.	1.6	31
34	Effect of sulfonamidoethylenediamine substituents in Ru ^{II} arene anticancer catalysts on transfer hydrogenation of coenzyme NAD ⁺ by formate. Dalton Transactions, 2018, 47, 7178-7189.	1.6	28
35	Organometallic Conjugates of the Drug Sulfadoxine for Combatting Antimicrobial Resistance. Chemistry - A European Journal, 2018, 24, 10078-10090.	1.7	28
36	Arene ruthenium dithiolato–carborane complexes for boron neutron capture therapy (BNCT). Journal of Organometallic Chemistry, 2015, 796, 17-25.	0.8	27

#	Article	IF	CITATIONS
37	Hydrosulfide Adducts of Organo-Iridium Anticancer Complexes. Inorganic Chemistry, 2016, 55, 2324-2331.	1.9	26
38	Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorganic Chemistry, 2018, 57, 14409-14420.	1.9	26
39	Novel tetranuclear Pd ^{II} and Pt ^{II} anticancer complexes derived from pyrene thiosemicarbazones. Dalton Transactions, 2020, 49, 9595-9604.	1.6	25
40	Towards Identification of Essential Structural Elements of Organoruthenium(II)â€Pyrithionato Complexes for Anticancer Activity. Chemistry - A European Journal, 2019, 25, 14169-14182.	1.7	22
41	Organoruthenium Complexes with Benzo-Fused Pyrithiones Overcome Platinum Resistance in Ovarian Cancer Cells. Cancers, 2021, 13, 2493.	1.7	22
42	Spin-labelled photo-cytotoxic diazido platinum(iv) anticancer complex. Dalton Transactions, 2016, 45, 13034-13037.	1.6	21
43	Genomicsâ€Ðriven Discovery of a Novel Glutarimide Antibiotic from <i>Burkholderia gladioli</i> Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angewandte Chemie - International Edition, 2020, 59, 23145-23153.	7.2	20
44	Synthesis and Mode of Action Studies on Iridium(I)-NHC Anticancer Drug Candidates. European Journal of Inorganic Chemistry, 2018, 2018, 2461-2470.	1.0	19
45	Nanofocused synchrotron X-ray absorption studies of the intracellular redox state of an organometallic complex in cancer cells. Chemical Communications, 2019, 55, 7065-7068.	2.2	17
46	Photoactive platinum(<scp>iv</scp>) complex conjugated to a cancer-cell-targeting cyclic peptide. Dalton Transactions, 2019, 48, 8560-8564.	1.6	17
47	Lysyl Oxidase Likeâ€⊋ (LOXL2): An Emerging Oncology Target. Advanced Therapeutics, 2020, 3, 1900119.	1.6	17
48	Effect of Regiochemistry and Methylation on the Anticancer Activity of a Ferroceneâ€Containing Organometallic Nucleoside Analogue. ChemBioChem, 2020, 21, 2487-2494.	1.3	15
49	Microfocus x-ray fluorescence mapping of tumour penetration by an organo‑osmium anticancer complex. Journal of Inorganic Biochemistry, 2018, 185, 26-29.	1.5	14
50	Strategies for conjugating iridium(III) anticancer complexes to targeting peptides via copper-free click chemistry. Inorganica Chimica Acta, 2020, 503, 119396.	1.2	13
51	Determination of the Aggregate Binding Site of Amyloid Protofibrils Using Electron Capture Dissociation Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 267-276.	1.2	12
52	Synchrotron XRF imaging of Alzheimer's disease basal ganglia reveals linear dependence of high-field magnetic resonance microscopy on tissue iron concentration. Journal of Neuroscience Methods, 2019, 319, 28-39.	1.3	10
53	Study of an Unusual Advanced Glycation End-Product (AGE) Derived from Glyoxal Using Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 673-683.	1.2	9
54	Unexpected Crosslinking and Diglycation as Advanced Glycation End-Products from Glyoxal. Journal of the American Society for Mass Spectrometry, 2014, 25, 2125-2133.	1.2	9

ISOLDA ROMERO CANELON

#	Article	IF	CITATIONS
55	Inâ€Cell Activation of Organoâ€Osmium(II) Anticancer Complexes. Angewandte Chemie, 2017, 129, 1037-1040.	1.6	9
56	Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation?. Chemical Communications, 2018, 54, 13853-13856.	2.2	9
57	Kinetic analysis of the accumulation of a half-sandwich organo-osmium pro-drug in cancer cells. Metallomics, 2019, 11, 1648-1656.	1.0	9
58	Structure-activity relationships for osmium(II) arene phenylazopyridine anticancer complexes functionalised with alkoxy and glycolic substituents. Journal of Inorganic Biochemistry, 2020, 210, 111154.	1.5	7
59	Bioactive half-sandwich Rh and Ir bipyridyl complexes containing artemisinin. Journal of Inorganic Biochemistry, 2021, 219, 111408.	1.5	7
60	Effect of cysteine thiols on the catalytic and anticancer activity of Ru(<scp>ii</scp>) sulfonyl-ethylenediamine complexes. Dalton Transactions, 2022, 51, 4447-4457.	1.6	7
61	Correction to Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis. ACS Chemical Biology, 2013, 8, 2345-2345.	1.6	5
62	Platinum(iv)-azido monocarboxylato complexes are photocytotoxic under irradiation with visible light. Dalton Transactions, 2021, 50, 10593-10607.	1.6	5
63	Genomicsâ€Driven Discovery of a Novel Glutarimide Antibiotic from <i>Burkholderia gladioli</i> Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angewandte Chemie, 2020, 132, 23345-23353.	1.6	3
64	NMR studies of group 8 metallodrugs: ¹⁸⁷ Os-enriched organo-osmium half-sandwich anticancer complex. Dalton Transactions, 2021, 50, 12970-12981.	1.6	3
65	A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics, 2022, 14, .	1.0	1
66	Frontispiece: Synchrotron Xâ€Ray Fluorescence Nanoprobe Reveals Target Sites for Organoâ€Osmium Complex in Human Ovarian Cancer Cells. Chemistry - A European Journal, 2017, 23, .	1.7	0
67	Frontispiece: Organometallic Conjugates of the Drug Sulfadoxine for Combatting Antimicrobial Resistance. Chemistry - A European Journal, 2018, 24, .	1.7	0