Costas Tsioptsias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9022924/publications.pdf

Version: 2024-02-01

430874 434195 31 993 18 31 citations h-index g-index papers 31 31 31 1402 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermo-chemical transition in cellulose esters and other polymers. Thermochimica Acta, 2022, 707, 179106.	2.7	15
2	Experimental Investigation of Polypropylene Composite Drawn Fibers with Talc, Wollastonite, Attapulgite and Single-Wall Carbon Nanotubes. Polymers, 2022, 14, 260.	4.5	13
3	Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis. Polymers, 2022, 14, 924.	4.5	7
4	Surface Response Analysis for the Optimization of Mechanical and Thermal Properties of Polypropylene Composite Drawn Fibers with Talc and Carbon Nanotubes. Polymers, 2022, 14, 1329.	4.5	3
5	On polymer-polymer miscibility and cellulose ester blends: A case study. Thermochimica Acta, 2022, 714, 179265.	2.7	3
6	Polypropylene nanocomposite fibers: A review of current trends and new developments. Journal of Plastic Film and Sheeting, 2021, 37, 283-311.	2.2	25
7	Glass chemical transition: An unknown thermal transition observed in cellulose acetate butyrate. Carbohydrate Polymers, 2021, 259, 117754.	10.2	17
8	Cr(VI) Leached from Lignite Fly Ashâ€"Assessment of Groundwater Contamination Risk. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	9
9	Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment. Separation and Purification Technology, 2018, 202, 119-129.	7.9	41
10	Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor. Environmental Technology (United Kingdom), 2017, 38, 1120-1126.	2.2	8
11	Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts. Water Science and Technology, 2016, 73, 2436-2445.	2.5	14
12	Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. Journal of Environmental Management, 2016, 183, 126-132.	7.8	28
13	Experimental study of degradation of molasses wastewater by biological treatment combined with ozonation. Journal of Chemical Technology and Biotechnology, 2016, 91, 857-864.	3.2	9
14	Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis. Journal of Environmental Management, 2015, 164, 104-113.	7.8	49
15	Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2. Journal of Thermal Analysis and Calorimetry, 2013, 111, 475-482.	3.6	16
16	A novel approach for textile cleaning based on supercritical CO2 and Pickering emulsions. Journal of Supercritical Fluids, 2013, 76, 83-93.	3.2	30
17	Isolation, characterization and emulsion stabilizing properties of polysaccharides form orchid roots (salep). Food Hydrocolloids, 2012, 28, 68-74.	10.7	29
18	Selective extraction of oxygenated compounds from oregano with subâ€critical water. Journal of the Science of Food and Agriculture, 2012, 92, 814-820.	3.5	5

#	Article	IF	CITATIONS
19	Superhydrophobic surfaces from hydrophobic or hydrophilic polymers via nanophase separation or electrospinning/electrospraying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387, 71-78.	4.7	46
20	Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocolloids, 2011, 25, 991-999.	10.7	69
21	Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide. Journal of Materials Science, 2011, 46, 5406-5411.	3.7	29
22	Simultaneous determination of sorption, heat of sorption, diffusion coefficient and glass transition depression in polymer–CO2 systems. Thermochimica Acta, 2011, 521, 98-106.	2.7	29
23	Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming. Polymer, 2011, 52, 2819-2826.	3.8	38
24	Ultra-small angle neutron scattering and X-ray tomography studies of caseinate–hydroxyapatite microporous materials. Materials Chemistry and Physics, 2010, 123, 77-82.	4.0	4
25	Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydrate Polymers, 2010, 81, 925-930.	10.2	47
26	Equation-of-state modeling of mixtures with ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 4843.	2.8	38
27	A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose. Materials Science and Engineering C, 2009, 29, 159-164.	7.3	41
28	Chitin and carbon aerogels from chitin alcogels. Carbohydrate Polymers, 2009, 76, 535-540.	10.2	67
29	Foaming of chitin hydrogels processed by supercritical carbon dioxide. Journal of Supercritical Fluids, 2008, 47, 302-308.	3.2	41
30	Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydrate Polymers, 2008, 74, 99-105.	10.2	70
31	Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chemistry, 2008, 10, 965.	9.0	153