
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9022631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal. Chemical Communications, 2018, 54, 8450-8453.	2.2	101
2	Design, preparation and application of conjugated microporous polymers. Polymer International, 2014, 63, 381-392.	1.6	97
3	Converting Pomelo Peel into Eco-friendly and Low-Consumption Photothermic Biomass Sponge toward Multifunctioal Solar-to-Heat Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 5328-5337.	3.2	79
4	A Novel Linearâ~'Hyperbranched Multiblock Polyethylene Produced from Ethylene Monomer Alone via Chain Walking and Chain Shuttling Polymerization. Macromolecules, 2009, 42, 1834-1837.	2.2	78
5	Design, preparation, and application of ordered porous polymer materials. Materials Chemistry and Physics, 2014, 144, 213-225.	2.0	62
6	Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater. Journal of Hazardous Materials, 2010, 181, 586-592.	6.5	55
7	Synthesis of stable metal-containing porous organic polymers for gas storage. European Polymer Journal, 2017, 91, 242-247.	2.6	52
8	Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polymer Chemistry, 2012, 3, 2768.	1.9	50
9	Effect of Chemical Cross-linking on Properties of Gelatin/Hyaluronic Acid Composite Hydrogels. Polymer-Plastics Technology and Engineering, 2013, 52, 45-50.	1.9	50
10	A hyper-cross-linked polystyrene with nano-pore structure. European Polymer Journal, 2008, 44, 2516-2522.	2.6	48
11	Hypercrosslinked polystyrene microspheres with bimodal pore size distribution and controllable macroporosity. Journal of Applied Polymer Science, 2010, 116, 84-92.	1.3	47
12	Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 318-325.	1.2	43
13	Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Advances, 2015, 5, 8933-8937.	1.7	40
14	Naphthalimideâ€Based Aggregationâ€Induced Emissive Polymeric Hydrogels for Fluorescent Pattern Switch and Biomimetic Actuators. Macromolecular Rapid Communications, 2020, 41, e2000123.	2.0	37
15	Modulating Carrier Transfer over Carbazolic Conjugated Microporous Polymers via Donor Structural Design for Functionalization of Thiophenols. ACS Applied Materials & Interfaces, 2021, 13, 60072-60083.	4.0	36
16	Multifunctional CNTs-PAA/MIL101(Fe)@Pt Composite Membrane for High-throughput Oily Wastewater Remediation. Journal of Hazardous Materials, 2021, 403, 123547.	6.5	35
17	Research progress in macroporous styrene-divinylbenzene co-polymer microspheres. Designed Monomers and Polymers, 2007, 10, 405-423.	0.7	34
18	Ferrocene-Based Conjugated Microporous Polymers Derived from Yamamoto Coupling for Gas Storage and Dye Removal. Polymers, 2020, 12, 719.	2.0	33

#	Article	IF	CITATIONS
19	Electrochemical Behaviors and Anion Recognition of Ferrocene Modified Hyperbranched Polyether. Macromolecules, 2009, 42, 4500-4510.	2.2	32
20	Controlled release in vitro of icariin from gelatin/hyaluronic acid composite microspheres. Polymer Bulletin, 2016, 73, 1055-1066.	1.7	31
21	Monodisperse Polystyrene Nanospheres with Ultrahigh Surface Area: Application for Hydrogen Storage. Macromolecular Chemistry and Physics, 2010, 211, 1012-1017.	1.1	29
22	Design and synthesis of conjugated polymers of tunable pore size distribution. Materials Chemistry and Physics, 2017, 186, 11-18.	2.0	28
23	Microwave-assisted rapid synthesis and activation of ultrathin trimetal–organic framework nanosheets for efficient electrocatalytic oxygen evolution. Journal of Colloid and Interface Science, 2021, 603, 148-156.	5.0	28
24	In vitro degradation behaviors of Poly-l-lactide/bioactive glass composite materials in phosphate-buffered solution. Polymer Bulletin, 2009, 63, 575-586.	1.7	26
25	Synthesis of novel ferrocene-based conjugated microporous polymers with intrinsic magnetism. European Polymer Journal, 2017, 93, 556-560.	2.6	26
26	Integrating Photorewritable Fluorescent Information in Shapeâ€Memory Organohydrogel Toward Dual Encryption. Advanced Optical Materials, 2022, 10, .	3.6	26
27	Unexpected Behavior of 1-Chlorodecane as a Novel Porogen in the Preparation of High-Porosity Poly(divinylbenzene) Microspheres. Journal of Physical Chemistry C, 2008, 112, 13171-13174.	1.5	25
28	Research progress on the preparation and application of monodisperse cationic polymer latex particles. Polymer International, 2012, 61, 1593-1602.	1.6	24
29	A facile one-step synthesis of fluorescent silicon quantum dots and their application for detecting Cu ²⁺ . RSC Advances, 2016, 6, 14465-14467.	1.7	24
30	Preparation and Properties of Novel Maleated Poly (D, L-lactide-co-glycolide) Porous Scaffolds for Tissue Engineering. Journal of Macromolecular Science - Physics, 2017, 56, 505-515.	0.4	23
31	Synthesis and characterization of novel maleated poly(d,l-lactide-co-glycolide) by direct melt copolymerization. Polymer Bulletin, 2015, 72, 1531-1543.	1.7	22
32	Effect of Surface Modification of Bioactive Glass on Properties of Poly-L-lactide Composite Materials. Journal of Macromolecular Science - Physics, 2012, 51, 1637-1646.	0.4	21
33	Biological Assessment <i>In-Vivo</i> of Gel-HA Scaffold Materials Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 572-576.	1.2	21
34	Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polymer Bulletin, 2015, 72, 713-723.	1.7	19
35	Ferrocenyl building block constructing porous organic polymer for gas capture and methyl violet adsorption. Journal of Central South University, 2020, 27, 1247-1261.	1.2	19
36	Preparation and Characterization of Hyaluronic Acid Hydrogel Blends with Gelatin. Journal of Macromolecular Science - Physics, 2012, 51, 2392-2400.	0.4	18

#	Article	IF	CITATIONS
37	Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds. Journal of Macromolecular Science - Physics, 2014, 53, 1145-1155.	0.4	18
38	Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Materials Chemistry and Physics, 2017, 199, 616-622.	2.0	18
39	Effect of pore structure on the adsorption capacities to different sizes of adsorbates by ferrocene-based conjugated microporous polymers. Polymer, 2021, 233, 124192.	1.8	18
40	Controllable Preparation of Monodisperse Polystyrene Microspheres with Different Sizes by Dispersion Polymerization. Macromolecular Symposia, 2008, 261, 113-120.	0.4	17
41	Dually Decorated Na ₃ V ₂ (PO ₄) ₂ F ₃ by Carbon and 3D Graphene as Cathode Material for Sodiumâ€lon Batteries with High Energy and Power Densities. ChemElectroChem, 2020, 7, 3975-3983.	1.7	17
42	Influence of Degradation of Poly-L-lactide on Mass Loss, Mechanical Properties, and Crystallinity in Phosphate-Buffered Solution. Journal of Macromolecular Science - Physics, 2009, 48, 309-317.	0.4	16
43	Morphological and Functional Expression of Fibroblast on Poly(lactide-co-glycolide)/β-Tricalcium Phosphate/Nature Bone. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 643-653.	1.8	16
44	Micro/nano-structured Ag coated VPO4/C as a high-performance anode material for lithium-ion batteries. Materials Letters, 2019, 246, 40-44.	1.3	16
45	Isothermal crystallization and melting behaviors of nano TiO ₂ â€modified polypropylene/polyamide 6 blends. Polymer Composites, 2012, 33, 1054-1063.	2.3	15
46	Promoting charge separation in donor–acceptor conjugated microporous polymers <i>via</i> cyanation for the photocatalytic reductive dehalogenation of chlorides. Catalysis Science and Technology, 2021, 11, 7151-7159.	2.1	15
47	Preparation and characterization of crosslinked polymer beads with tunable pore morphology. Journal of Applied Polymer Science, 2011, 121, 654-659.	1.3	14
48	Biological Assessment of Composite Materials Based on Poly-L-lactide and Bovine Bone. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 81-84.	1.8	14
49	Preparation of collagen fiber/CaCO3 hybrid materials and their applications in synthetic paper. Fibers and Polymers, 2014, 15, 519-524.	1.1	14
50	Conversion of HBr to Br 2 in the flue gas from the combustion of waste printed circuit boards in post-combustion area. Journal of Cleaner Production, 2017, 161, 239-244.	4.6	14
51	Cytocompatibility of Poly(L-lactide-co-glycolide) Porous Scaffold Materials for Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 1026-1035.	1.8	13
52	Study on Controlled Release of 5-Fluorouracil from Gelatin/Chitosan Microspheres. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 1030-1034.	1.2	13
53	Fabrication and Characterization of Gelatin/Chitosan Microspheres for Drug Release. Journal of Macromolecular Science - Physics, 2012, 51, 777-785.	0.4	13
54	Synthesis of fluorescent carbon nanoparticles grafted with polystyrene and their fluorescent fibers processed by electrospinning. RSC Advances, 2014, 4, 57683-57690.	1.7	13

#	Article	IF	CITATIONS
55	CrPO4/C composite as a novel anode material for lithium-ion batteries. Journal of Power Sources, 2019, 441, 227180.	4.0	13
56	The influence of crosslinking density on the pore morphology of copolymer beads prepared with a novel pore-forming agent. Materials Chemistry and Physics, 2011, 125, 315-318.	2.0	12
57	Structural effects of highly π-conjugated mesogenic Schiff-base moiety on the cationic polymerization of benzoxazine and formation of ordered morphologies. Reactive and Functional Polymers, 2018, 124, 139-148.	2.0	12
58	A Novel Route to Treat Wastewater Containing Cationic Dyes. Separation Science and Technology, 2012, 47, 630-635.	1.3	11
59	Mechanical and Antibacterial Properties of Polypropylene/Polyamide 6 Blends-TiO2Nanocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 849-853.	1.9	11
60	Evaluation of Biological Properties In-Vivo of Poly(L-Lactide-Coglycolide) Composites Containing Bioactive Glass. Polymers and Polymer Composites, 2013, 21, 79-84.	1.0	11
61	Preparation of Thermal and pH Dually Sensitive Polyurethane Membranes and Their Properties. Journal of Macromolecular Science - Physics, 2014, 53, 398-411.	0.4	11
62	Preparation and Properties of Polyurethane Hydrogels Based on Methylene Diphenyl Diisocyanate/Polycaprolactone-Polyethylene Glycol. Journal of Macromolecular Science - Physics, 2016, 55, 839-848.	0.4	11
63	The controllable construction and properties characterization of organic–inorganic hybrid materials based on benzoxazine-bridged polysilsesquioxanes. RSC Advances, 2017, 7, 3136-3144.	1.7	11
64	Spiropyran-modified silicon quantum dots with reversibly switchable photoluminescence. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	11
65	The Spherical Cleavage Behavior of Polydivinylbenzene during Suspension Polymerization. Designed Monomers and Polymers, 2010, 13, 369-375.	0.7	10
66	Characterization of Biocompatible Scaffolds Based on Gelatin and Hyaluronic Acid for Fibroblasts Culture. Polymers and Polymer Composites, 2012, 20, 791-796.	1.0	10
67	A Comparative Study of Preparation of Porous Polyâ€ <scp>L</scp> â€lactide Scaffolds Using NaHCO ₃ and NaCl as Porogen Materials. Journal of Macromolecular Science - Physics, 2008, 47, 667-674.	0.4	9
68	Preparation of poly(divinylbenzene) microspheres with controllable pore structure using poly(propylene)/toluene as coporogen. Journal of Applied Polymer Science, 2009, 113, 2997-3004.	1.3	9
69	Influences of Molecular Weight and Content of Polyethylene Glycol on Morphology and Size of Nano-Bioactive Glass. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 522-527.	1.2	9
70	Preparation of Conductive Polyaniline/Functionalized Titanium Dioxide Nanocomposites via Graft Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 149-153.	1.2	8
71	Covalent Functionalization of Silica Nanoparticle with Poly(glycidyl methacrylate) <i>via</i> ATRP at Ambient Temperature. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 25-28.	1.2	8
72	A Novel Branched–Hyperbranched Block Polyolefin Produced via Chain Shuttling Polymerization from Ethylene Alone. Polymer-Plastics Technology and Engineering, 2014, 53, 1832-1837.	1.9	8

#	Article	IF	CITATIONS
73	Regeneration Research of Porous Magnetic Microspheres during Treatment of Wastewater Containing Cationic Dyes. Separation Science and Technology, 2010, 45, 2345-2349.	1.3	7
74	Preparation of Monodisperse Cationic Microspheres by Dispersion Polymerization of Styrene and a Cation-Charged Monomer in the Absence of a Stabilizer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 518-525.	1.2	7
75	Fabrication and Properties of Gelatin/Chitosan Microspheres Loaded with 5-Fluorouracil. Journal of Macromolecular Science - Physics, 2013, 52, 973-983.	0.4	7
76	Biocompatibility <i>In-vitro</i> of Gel/HA Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1048-1053.	1.2	7
77	Mechanical properties and nonisothermal crystallization kinetics of polyamide 6/functionalized TiO ₂ nanocomposites. Polymer Composites, 2014, 35, 294-300.	2.3	7
78	A Novel Route to Prepare Cationic Polystyrene Latex Particles with Monodispersity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 271-278.	1.2	7
79	Preparation and Properties of 2, 4-2-Isocyanic Acid Methyl Ester/Poly(ϵ-caprolactone)/Diethylene Glycol Hydrogels. Journal of Macromolecular Science - Physics, 2017, 56, 245-253.	0.4	6
80	Synthesis of Low Isotactic Polypropylene Using MgCl2/AlCl3-supported Ziegler–Natta Catalysts Prepared Using the One-Pot Milling Method. Designed Monomers and Polymers, 2008, 11, 139-145.	0.7	5
81	A facile route to synthesis of superparamagnetic Fe3O4–PDVB nanoworms. Materials Letters, 2009, 63, 2625-2627.	1.3	5
82	A simple route to prepare pomegranateâ€ike polystyreneâ€based microspheres with high porosity. Polymer International, 2011, 60, 1287-1290.	1.6	5
83	Functional block copolymers from controlled radical and ring opening polymerization. Polymer Science - Series B, 2015, 57, 387-394.	0.3	5
84	Improving the stereocomplexation and toughness of poly(<scp>L</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 10 ⁻ methacrylate terpolymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 419-430.	Tf 50 312 1.2	Td (acid)/poly 4
85	Multicolor Fluorescent Polymeric Actuator with Selfâ€Sustained Oscillation Behavior. Macromolecular Materials and Engineering, 2021, 306, 2000781.	1.7	4
86	Understanding the crystallization process of a diketopyrrolopyrroleâ€based conjugated polymer in blend films. Journal of Polymer Science, 2021, 59, 925-934.	2.0	4
87	A novel strategy to improve gas capture performance of metal-free azo-bridged porphyrin porous organic polymers: The design of traps. European Polymer Journal, 2022, 175, 111359.	2.6	4
88	Recent research progress in influence of the ansa-zirconcene catalytic system on the polypropylene microstructure. Designed Monomers and Polymers, 2007, 10, 281-295.	0.7	3
89	Propylene Polymerization Catalyzed by rac-Et(Ind)2ZrCl2/Cp2ZrCl2 in the Presence of ZnEt2. Designed Monomers and Polymers, 2009, 12, 425-431.	0.7	3
90	The influence of different porogens with halogen substituents on the pore structure of polydivinylbenzene beads. Materials Chemistry and Physics, 2012, 134, 122-126.	2.0	3

#	Article	IF	CITATIONS
91	Monodisperse cross-linked polystyrene nanospheres by emulsifier-free miniemulsion polymerization. E-Polymers, 2015, 15, 263-270.	1.3	3
92	Preparation of organic/inorganic hybrid nanomaterials using aggregates of star block copolymer consisting of poly(stearyl methacrylate) and poly(3â€(trimethoxysilyl) propyl methacrylate) as precursor. Journal of Applied Polymer Science, 2008, 108, 2010-2016.	1.3	2
93	Biocompatibility In-vivo of Poly-L-lactide and Bioactive Class Composite Substitute for Internal Fracture Fixation. Polymers and Polymer Composites, 2011, 19, 797-802.	1.0	2
94	Removal of Methyl Violet and Cationic Gold Yellow from Aqueous with Porous Magnetic Polymer Microspheres and Its Adsorption Kinetics. Polymers and Polymer Composites, 2014, 22, 809-816.	1.0	2
95	Macroporous polymer beads derived from a novel coporogen of polyethylene/dichlorobenzene. E-Polymers, 2017, 17, 275-282.	1.3	2
96	N-isopropylacrylamide and spiropyran copolymer-grafted fluorescent carbon nanoparticles with dual responses to light and temperature stimuli. Polymer Journal, 2020, 52, 1289-1298.	1.3	2
97	Facile Synthesis of Microporous Ferrocenyl Polymers Photocatalyst for Degradation of Cationic Dye. Polymers, 2022, 14, 1900.	2.0	2
98	Influence of Pentaerythritol Tetraacrylate Crosslinker on Polycarboxylate Superplasticizer Performance in Cementitious System. Materials, 2022, 15, 1524.	1.3	1
99	The preparation and characterization of high-performance mesoporous carbon from a highly Ï€-conjugated polybenzoxazine precursor. New Journal of Chemistry, 2021, 45, 8022-8031.	1.4	0