Vincent H Crespi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9022577/publications.pdf Version: 2024-02-01

214 papers	17,151 citations	17405 63 h-index	14702 127 g-index
221 all docs	221 docs citations	221 times ranked	18028 citing authors

VINCENT H CDESDI

#	Article	IF	CITATIONS
1	Catalytic Nanomotors:Â Autonomous Movement of Striped Nanorods. Journal of the American Chemical Society, 2004, 126, 13424-13431.	6.6	1,805
2	Extraordinary Room-Temperature Photoluminescence in Triangular WS ₂ Monolayers. Nano Letters, 2013, 13, 3447-3454.	4.5	1,375
3	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	1.6	1,185
4	Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Physical Review Letters, 1996, 76, 971-974.	2.9	860
5	Fully collapsed carbon nanotubes. Nature, 1995, 377, 135-138.	13.7	466
6	Microstructured Optical Fibers as High-Pressure Microfluidic Reactors. Science, 2006, 311, 1583-1586.	6.0	442
7	Registry-dependent interlayer potential for graphitic systems. Physical Review B, 2005, 71, .	1.1	413
8	Microscopic determination of the interlayer binding energy in graphite. Chemical Physics Letters, 1998, 286, 490-496.	1.2	358
9	Catalytic Motors for Transport of Colloidal Cargo. Nano Letters, 2008, 8, 1271-1276.	4.5	339
10	Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes. Physical Review Letters, 2000, 85, 4727-4730.	2.9	311
11	In SituBand Gap Engineering of Carbon Nanotubes. Physical Review Letters, 1997, 79, 2093-2096.	2.9	273
12	Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. Scientific Reports, 2014, 4, 5530.	1.6	262
13	Prediction of a pure-carbon planar covalent metal. Physical Review B, 1996, 53, R13303-R13305.	1.1	252
14	Benzene-derived carbon nanothreads. Nature Materials, 2015, 14, 43-47.	13.3	250
15	Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides. ACS Nano, 2013, 7, 10475-10481.	7.3	232
16	Plastic Deformations of Carbon Nanotubes. Physical Review Letters, 1998, 81, 5346-5349.	2.9	231
17	Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Science Advances, 2017, 3, e1602813.	4.7	213
18	Crystallites of magnetic charges in artificial spin ice. Nature, 2013, 500, 553-557.	13.7	197

#	Article	IF	CITATIONS
19	Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nature Communications, 2017, 8, 14670.	5.8	196
20	Non-oxidative intercalation and exfoliation of graphite by BrÃ,nsted acids. Nature Chemistry, 2014, 6, 957-963.	6.6	175
21	Selectively manipulable acoustic-powered microswimmers. Scientific Reports, 2015, 5, 9744.	1.6	168
22	Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Applied Physics Letters, 2003, 82, 1667-1669.	1.5	162
23	Anisotropic electron-beam damage and the collapse of carbon nanotubes. Physical Review B, 1996, 54, 5927-5931.	1.1	147
24	Fractional quantum Hall effect in graphene. Physical Review B, 2006, 74, .	1.1	127
25	ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS ₂). Journal of Physical Chemistry Letters, 2017, 8, 631-640.	2.1	126
26	Topological Phases in Graphitic Cones. Physical Review Letters, 2000, 85, 5190-5193.	2.9	124
27	Acoustic actuation of bioinspired microswimmers. Lab on A Chip, 2017, 17, 395-400.	3.1	124
28	Gapping by Squashing: Metal-Insulator and Insulator-Metal Transitions in Collapsed Carbon Nanotubes. Physical Review Letters, 2000, 84, 2453-2456.	2.9	121
29	Effective Temperature in an Interacting Vertex System: Theory and Experiment on Artificial Spin Ice. Physical Review Letters, 2010, 105, 047205.	2.9	117
30	Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets. Physical Review B, 1995, 52, 14935-14940.	1.1	116
31	Condensation of Helium in Nanotube Bundles. Physical Review Letters, 2000, 84, 3883-3886.	2.9	113
32	Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors. Physical Review Letters, 2003, 90, 257403.	2.9	112
33	Effect of Pressure on the Magnetoresistance of Single CrystalNd0.5Sr0.36Pb0.14MnO3â^î´. Physical Review Letters, 1996, 76, 295-298.	2.9	110
34	Computational design of direct-bandgap semiconductors that lattice-match silicon. Nature, 2001, 409, 69-71.	13.7	110
35	Graphene cones:â€,Classification by fictitious flux and electronic properties. Physical Review B, 2004, 69,	1.1	109
36	Emergent, Collective Oscillations of Self-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano, 2010, 4, 4845-4851.	7.3	109

#	Article	IF	CITATIONS
37	Ground State Lost but Degeneracy Found: The Effective Thermodynamics of Artificial Spin Ice. Physical Review Letters, 2007, 98, 217203.	2.9	108
38	Defect-Controlled Nucleation and Orientation of WSe ₂ on hBN: A Route to Single-Crystal Epitaxial Monolayers. ACS Nano, 2019, 13, 3341-3352.	7.3	107
39	Dynamic Interactions between Fast Microscale Rotors. Journal of the American Chemical Society, 2009, 131, 9926-9927.	6.6	106
40	Monolayer Vanadiumâ€Doped Tungsten Disulfide: A Roomâ€Temperature Dilute Magnetic Semiconductor. Advanced Science, 2020, 7, 2001174.	5.6	104
41	Smallest Nanotube: Breaking the Symmetry ofsp3Bonds in Tubular Geometries. Physical Review Letters, 2001, 87, 125502.	2.9	102
42	Multiscale computational understanding and growth of 2D materials: a review. Npj Computational Materials, 2020, 6, .	3.5	89
43	Single-Wall Carbon Nanohorns and Nanocones. Topics in Applied Physics, 2007, , 605-629.	0.4	88
44	Reversible Intercalation of Hexagonal Boron Nitride with BrÃ̧nsted Acids. Journal of the American Chemical Society, 2013, 135, 8372-8381.	6.6	88
45	Mechanochemical Synthesis of Carbon Nanothread Single Crystals. Journal of the American Chemical Society, 2017, 139, 16343-16349.	6.6	88
46	Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose, 2014, 21, 1025-1039.	2.4	86
47	Linearly Polymerized Benzene Arrays As Intermediates, Tracing Pathways to Carbon Nanothreads. Journal of the American Chemical Society, 2015, 137, 14373-14386.	6.6	86
48	Theory of Carbon Nanocones: Mechanical Chiral Inversion of a Micron-Scale Three-Dimensional Object. Physical Review Letters, 2004, 93, 255504.	2.9	85
49	Lowâ€Temperature Solution Synthesis of Fewâ€Layer 1T ′â€MoTe ₂ Nanostructures Exhibitir Lattice Compression. Angewandte Chemie - International Edition, 2016, 55, 2830-2834.	^{1g} 7.2	84
50	Carbon Nitride Nanothread Crystals Derived from Pyridine. Journal of the American Chemical Society, 2018, 140, 4969-4972.	6.6	81
51	Systematic Enumeration of sp ³ Nanothreads. Nano Letters, 2015, 15, 5124-5130.	4.5	80
52	Cellulose Microfibril Twist, Mechanics, and Implication for Cellulose Biosynthesis. Journal of Physical Chemistry A, 2013, 117, 2580-2589.	1,1	79
53	Doping effects on the electronic and structural properties ofCoO2: AnLSDA+Ustudy. Physical Review B, 2004, 70, .	1.1	77
54	Nondispersive Raman <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>D</mml:mi></mml:math> band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Physical Review B, 2010, 82, .	1.1	76

#	Article	IF	CITATIONS
55	Prediction that Uniaxial Tension alongâŸ 111⟩Produces a Direct Band Gap in Germanium. Physical Review Letters, 2009, 102, 156401.	2.9	74
56	Three-dimensional fluctuation conductivity in superconducting single crystal K3C60 and Rb3C60. Nature, 1993, 361, 54-56.	13.7	73
57	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.	6.6	73
58	Magnetotransport properties ofLa0.6Pb0.4MnO3â^îÎandNd0.6(Sr0.7Pb0.3)0.4MnO3â^îÎsingle crystals. Physical Review B, 1995, 52, 9147-9150.	1.1	70
59	Theory ofB2OandBeB2Nanotubes: New Semiconductors and Metals in One Dimension. Physical Review Letters, 2002, 89, 056403.	2.9	70
60	Collective stabilization of hydrogen chemisorption on graphenic surfaces. Physical Review B, 2003, 68, .	1.1	68
61	Direct entropy determination and application to artificial spin ice. Nature Physics, 2010, 6, 786-789.	6.5	66
62	Intricate Resonant Raman Response in Anisotropic ReS ₂ . Nano Letters, 2017, 17, 5897-5907.	4.5	66
63	Interstitial He and Ne in Nanotube Bundles. Journal of Low Temperature Physics, 1998, 113, 447-452.	0.6	63
64	Universal Behavior of Nearly Free Electron States in Carbon Nanotubes. Physical Review Letters, 2006, 96, 196803.	2.9	63
65	Electron-scattering mechanisms in single-crystalK3C60. Physical Review B, 1992, 46, 12064-12067.	1.1	60
66	Stochastic Heterostructures and Diodium in B/N-Doped Carbon Nanotubes. Physical Review Letters, 2001, 87, 136402.	2.9	59
67	The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR. Journal of the American Chemical Society, 2018, 140, 7658-7666.	6.6	59
68	Perpendicular Magnetization and Generic Realization of the Ising Model in Artificial Spin Ice. Physical Review Letters, 2012, 109, 087201.	2.9	58
69	Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie - International Edition, 2017, 56, 7817-7821.	7.2	55
70	Nucleation of Carbon Nanotubes without Pentagonal Rings. Physical Review Letters, 1999, 83, 1791-1794.	2.9	53
71	Acoustofluidic actuation of in situ fabricated microrotors. Lab on A Chip, 2016, 16, 3532-3537.	3.1	51
72	Relations between global and local topology in multiple nanotube junctions. Physical Review B, 1998, 58, 12671-12671.	1.1	49

#	Article	IF	CITATIONS
73	Guiding Chiral Self-Propellers in a Periodic Potential. Physical Review Letters, 2015, 115, 118101.	2.9	49
74	Predictions of New Crystalline States for Assemblies of Nanoparticles:  Perovskite Analogues and 3-D Arrays of Self-Assembled Nanowires. Nano Letters, 2003, 3, 1183-1186.	4.5	48
75	Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers. Nano Letters, 2016, 16, 6982-6987.	4.5	48
76	Determination of superconducting and normal state parameters of single crystal K3C60. Solid State Communications, 1993, 86, 643-646.	0.9	47
77	Magneto-optical Kerr effect studies of square artificial spin ice. Physical Review B, 2011, 84, .	1.1	47
78	Rubidium isotope effect in superconductingRb3C60. Physical Review Letters, 1994, 72, 3706-3709.	2.9	46
79	Localization in single-walled carbon nanotubes. Solid State Communications, 1998, 109, 105-109.	0.9	46
80	Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold. Journal of Physical Chemistry C, 2010, 114, 18059-18066.	1.5	46
81	Plastic deformations of boron-nitride nanotubes: An unexpected weakness. Physical Review B, 2000, 62, 11050-11053.	1.1	45
82	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	2.5	44
83	Anharmonic phonons and high-temperature superconductivity. Physical Review B, 1993, 48, 398-406.	1.1	43
84	Helium in One-Dimensional Nanopores: Free Dispersion, Localization, and Commensurate/Incommensurate Transitions with Nonrigid Orbitals. Physical Review Letters, 2001, 86, 3360-3363.	2.9	42
85	1-Adamantanethiolate Monolayer Displacement Kinetics Follow a Universal Form. Journal of the American Chemical Society, 2007, 129, 10741-10746.	6.6	42
86	Prediction of a multicenter-bonded solid boron hydride for hydrogen storage. Physical Review B, 2011, 83, .	1.1	42
87	Defect Coupling and Sub-Angstrom Structural Distortions in W _{1–<i>x</i>} Mo _{<i>x</i>} S ₂ Monolayers. Nano Letters, 2017, 17, 2802-2808.	4.5	42
88	Thermopower of single-crystalNd1â^'x(Sr,Pb)xMnO3â^'δ. Physical Review B, 1996, 53, 14303-14308.	1.1	40
89	Dynamics of cleaning, passivating and doping monolayer MoS ₂ by controlled laser irradiation. 2D Materials, 2019, 6, 045031.	2.0	40
90	Analyzing the Motion of Benzene on Au{111}:  Single Molecule Statistics from Scanning Probe Images. Journal of Physical Chemistry C, 2007, 111, 6167-6182.	1.5	39

#	Article	IF	CITATIONS
91	Anharmonic phonons and the isotope effect in superconductivity. Physical Review B, 1991, 43, 12921-12924.	1.1	37
92	Full orientation control of epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2on hBN assisted by substrate defects. Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	:m t.ı <td>ml:ເສາຮູub></td>	ml:ເສາຮູub>
93	Nanotube-Substrate Interactions: Distinguishing Carbon Nanotubes by the Helical Angle. Physical Review Letters, 2004, 92, 085503.	2.9	36
94	Evidence for Ambient-Temperature Reversible Catalytic Hydrogenation in Pt-doped Carbons. Nano Letters, 2013, 13, 137-141.	4.5	36
95	Evidence for Orientational Order in Nanothreads Derived from Thiophene. Journal of Physical Chemistry Letters, 2019, 10, 7164-7171.	2.1	36
96	Carbon Isotope Effect in Single-CrystalRb3C60. Physical Review Letters, 1999, 83, 404-407.	2.9	35
97	Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. Nano Letters, 2020, 20, 284-291.	4.5	34
98	Reversible Lability by <i>in Situ</i> Reaction of Self-Assembled Monolayers. Journal of the American Chemical Society, 2009, 131, 2252-2259.	6.6	33
99	Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads. Journal of the American Chemical Society, 2020, 142, 17944-17955.	6.6	32
100	Scalable Synthesis of Crystalline One-Dimensional Carbon Nanothreads through Modest-Pressure Polymerization of Furan. ACS Nano, 2021, 15, 4134-4143.	7.3	32
101	ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nature Communications, 2022, 13, .	5.8	32
102	Photoluminescence from nanocrystalline graphite monofluoride. Applied Physics Letters, 2010, 97, .	1.5	31
103	Site-selective radiation damage of collapsed carbon nanotubes. Applied Physics Letters, 1998, 73, 2435-2437.	1.5	30
104	Discrete transverse superconducting modes in nanocylinders. Physical Review B, 2004, 69, .	1.1	30
105	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .	2.2	30
106	Anharmonic phonons and the anomalous isotope effect inLa2â^'xSrxCuO4. Physical Review B, 1991, 44, 4712-4715.	1.1	29
107	Resistivity saturation in alkali-doped C60. Solid State Communications, 1995, 93, 973-977.	0.9	29
108	Chiral diffusion of rotary nanomotors. Physical Review E, 2013, 87, 050301.	0.8	29

#	Article	IF	CITATIONS
109	Anomalous phonon stiffening associated with the (1 1 1) antiphase boundary in L12 Ni3Al. Acta Materialia, 2015, 82, 287-294.	3.8	29
110	A general flux-based analysis for spherical electrocatalytic nanomotors. Physics of Fluids, 2015, 27, .	1.6	28
111	Lithiation induced corrosive fracture in defective carbon nanotubes. Applied Physics Letters, 2013, 103, \cdot	1.5	27
112	Examination of biological hotspot hypothesis of primary cell wall using a computational cell wall network model. Cellulose, 2015, 22, 1027-1038.	2.4	26
113	Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 6937-6945.	6.6	26
114	Illuminating Invisible Grain Boundaries in Coalesced Single-Orientation WS ₂ Monolayer Films. Nano Letters, 2021, 21, 6487-6495.	4.5	26
115	Curvature-induced D-band Raman scattering in folded graphene. Journal of Physics Condensed Matter, 2010, 22, 334205.	0.7	25
116	Self-electrophoresis of spheroidal electrocatalytic swimmers. Physics of Fluids, 2015, 27, .	1.6	25
117	Comparing frustrated and unfrustrated clusters of single-domain ferromagnetic islands. Physical Review B, 2010, 82, .	1.1	24
118	Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra. Nano Letters, 2018, 18, 4934-4942.	4.5	24
119	Tuning magnetic frustration of nanomagnets in triangular-lattice geometry. Applied Physics Letters, 2008, 93, 252504.	1.5	23
120	Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process. Applied Physics Letters, 2010, 97, .	1.5	23
121	Magnetic perturbation and associated energies of the antiphase boundaries in ordered Ni3Al. Journal of Applied Physics, 2010, 108, .	1.1	23
122	Local Temperature during the Growth of Multiwalled Carbon Nanotubes. Physical Review Letters, 1999, 82, 2908-2910.	2.9	22
123	Lowâ€Temperature Solution Synthesis of Few‣ayer 1T ′â€MoTe 2 Nanostructures Exhibiting Lattice Compression. Angewandte Chemie, 2016, 128, 2880-2884.	1.6	22
124	Unexpected Near-Infrared to Visible Nonlinear Optical Properties from 2-D Polar Metals. Nano Letters, 2020, 20, 8312-8318.	4.5	22
125	â€~Sacrificial' supramolecular assembly and pressure-induced polymerization: toward sequence-defined functionalized nanothreads. Chemical Science, 2020, 11, 11419-11424.	3.7	22
126	Clathrates join the covalent club. Nature Materials, 2003, 2, 650-651.	13.3	21

#	Article	IF	CITATIONS
127	Static and Dynamical Phyllotaxis in a Magnetic Cactus. Physical Review Letters, 2009, 102, 186103.	2.9	20
128	Nanomotor mechanisms and motive force distributions from nanorotor trajectories. Physical Review E, 2013, 88, 062317.	0.8	20
129	Theory of Finite-Length Grain Boundaries of Controlled Misfit Angle in Two-Dimensional Materials. Nano Letters, 2017, 17, 5297-5303.	4.5	20
130	Modeling for Structural Engineering and Synthesis of Two-Dimensional WSe ₂ Using a Newly Developed ReaxFF Reactive Force Field. Journal of Physical Chemistry C, 2020, 124, 28285-28297.	1.5	20
131	Tuning Transport and Chemical Sensitivity via Niobium Doping of Synthetic MoS ₂ . Advanced Materials Interfaces, 2020, 7, 2000856.	1.9	19
132	Metal-insulator transition inAC60:RbC60andKC60. Physical Review B, 1997, 56, 6627-6630.	1.1	18
133	Tuning Fermi-Surface Properties through Quantum Confinement in Metallic Metalattices: New Metals from Old Atoms. Physical Review Letters, 2001, 86, 696-699.	2.9	18
134	Online Study Behavior of 100,000 Students Preparing for the SAT, ACT, and GRE. Journal of Educational Computing Research, 2004, 30, 255-262.	3.6	18
135	Electronic Bisection of a Single-Wall Carbon Nanotube by Controlled Chemisorption. Physical Review Letters, 2007, 99, 026802.	2.9	18
136	Ignoring Your Neighbors: Moment Correlations Dominated by Indirect or Distant Interactions in an Ordered Nanomagnet Array. Physical Review Letters, 2011, 107, 117204.	2.9	18
137	Geometrical perturbation of graphene electronic structure. Physical Review B, 2000, 61, 7308-7311.	1.1	17
138	Asymmetry in negative differential resistance driven by electron–electron interactions in two-site molecular devices. Applied Physics Letters, 2001, 79, 2829-2831.	1.5	17
139	Metallic Membranes with Subwavelength Complementary Patterns: Distinct Substrates for Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 5472-5477.	7.3	17
140	Stabilizing the Zigzag Edge: Graphene Nanoribbons with Sterically Constrained Terminations. Physical Review Letters, 2012, 109, 076802.	2.9	17
141	Heat capacity and vibrational spectra of monolayer films adsorbed in nanotubes. Physical Review B, 1998, 58, R13426-R13429.	1.1	16
142	Carbon Nanostructures as an Electromechanical Bicontinuum. Physical Review Letters, 2007, 99, 045501.	2.9	16
143	Kinematic matrix theory and universalities in self-propellers and active swimmers. Physical Review E, 2014, 89, 062304.	0.8	16
144	Possible discrepancies between transport and superconducting electron-phonon coupling due to anisotropic Fermi surface nesting. Solid State Communications, 1992, 81, 187-189.	0.9	15

#	Article	IF	CITATIONS
145	Annealing a magnetic cactus into phyllotaxis. Physical Review E, 2010, 81, 046107.	0.8	15
146	Modeling Electrostatically Induced Collapse Transitions in Carbon Nanotubes. Physical Review Letters, 2011, 106, 155501.	2.9	15
147	Theory of genus reduction in alkali-induced graphitization of nanoporous carbon. Physical Review B, 2007, 76, .	1.1	14
148	Constraints on \$\${m I}eta\$\$ I β cellulose twist from DFT calculations of \$\$^{13}hbox {C}\$\$ 13 C NMR chemical shifts. Cellulose, 2014, 21, 3979-3991.	2.4	14
149	All the Ways To Have Substituted Nanothreads. Journal of Chemical Theory and Computation, 2018, 14, 1131-1140.	2.3	14
150	Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices. ACS Nano, 2020, 14, 4235-4243.	7.3	14
151	Magnetotransport in single-crystal Rb3C60. Physica C: Superconductivity and Its Applications, 1994, 228, 175-180.	0.6	13
152	Universal Form of Hall Coefficient in K and Rb Doped Single CrystalC60. Physical Review Letters, 1995, 74, 1637-1640.	2.9	13
153	Gibbsianizing nonequilibrium dynamics of artificial spin ice and other spin systems. New Journal of Physics, 2012, 14, 045009.	1.2	13
154	Self-consistent nonlocal feedback theory for electrocatalytic swimmers with heterogeneous surface chemical kinetics. Physical Review E, 2015, 91, 062303.	0.8	13
155	Helium mixtures in nanotube bundles. Physical Review B, 2000, 61, 7288-7290.	1.1	12
156	Theory of metastable group-IV alloys formed from CVD precursors. Physical Review B, 2001, 64, .	1.1	12
157	Abrupt Topological Transitions in the Hysteresis Curves of Ferromagnetic Metalattices. Physical Review Letters, 2002, 89, 197203.	2.9	12
158	Electronic properties of mixed-phase graphene/h-BN sheets using real-space pseudopotentials. Physical Review B, 2013, 88, .	1.1	12
159	Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie, 2017, 129, 7925-7929.	1.6	12
160	Tuning transport across MoS2/graphene interfaces via as-grown lateral heterostructures. Npj 2D Materials and Applications, 2020, 4, .	3.9	12
161	Theory of Carbomorph Cycles. Physical Review Letters, 2013, 110, 156803.	2.9	11
162	Gaussian memory in kinematic matrix theory for self-propellers. Physical Review E, 2014, 90, 062304.	0.8	11

#	Article	IF	CITATIONS
163	Perfect and Defective ¹³ C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by ¹³ C NMR. Journal of the American Chemical Society, 2021, 143, 9529-9542.	6.6	11
164	Simple estimate of electron-phonon coupling in small fullerenes. Physical Review B, 1999, 60, 100-101.	1.1	10
165	Effect of bending on single-walled carbon nanotubes: A Raman scattering study. Physical Review B, 2010, 81, .	1.1	10
166	Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Journal of Physics Condensed Matter, 2010, 22, 334201.	0.7	10
167	Nondestructive Measurements of the Mechanical and Structural Properties of Nanostructured Metalattices. Nano Letters, 2020, 20, 3306-3312.	4.5	10
168	Bypassing slip velocity: rotational and translational velocities of autophoretic colloids in terms of surface flux. Journal of Fluid Mechanics, 2016, 802, 294-304.	1.4	9
169	Field-Tunable Interactions and Frustration in Underlayer-Mediated Artificial Spin Ice. Physical Review Letters, 2021, 127, 117203.	2.9	9
170	Anharmonic phonons and superconductivity in Pd H(D). Solid State Communications, 1992, 83, 427-429.	0.9	8
171	Alkali-metal isotope effect in Rb3C60. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2493-2494.	0.6	8
172	NanoVelcro: Theory of Guided Folding in Atomically Thin Sheets with Regions of Complementary Doping. Nano Letters, 2017, 17, 6708-6714.	4.5	8
173	Scattering mechanisms in Rb-doped single-crystalC60. Physical Review B, 1995, 52, 3619-3623.	1.1	7
174	Pressure dependence of the resistivity and magnetoresistance in single-crystal. Journal of Physics Condensed Matter, 1996, 8, 7723-7731.	0.7	7
175	Characterization of switching field distributions in Ising-like magnetic arrays. Physical Review B, 2017, 95, .	1.1	7
176	Magnetization states and switching in narrow-gapped ferromagnetic nanorings. AIP Advances, 2012, 2, .	0.6	7
177	Imaging the stochastic microstructure and dynamic development of correlations in perpendicular artificial spin ice. Physical Review Research, 2020, 2, .	1.3	7
178	Reciprocal Space Constraints Create Real-Space Anomalies in Doped Carbon Nanotubes. Physical Review Letters, 2007, 99, 196803.	2.9	6
179	Soggy origami. Nature, 2009, 462, 858-859.	13.7	6
180	Probing the origin of lateral heterogeneities in synthetic monolayer molybdenum disulfide. 2D Materials, 2019, 6, 025008.	2.0	6

#	Article	IF	CITATIONS
181	Near constancy of the pressure dependence ofTcacross families of organic and fullerene superconductors. Physical Review B, 1996, 53, 56-58.	1.1	5
182	Distinguishing advective and powered motion in self-propelled colloids. Journal of Physics Condensed Matter, 2017, 29, 445101.	0.7	5
183	Mechanistic insights into the pressure-induced polymerization of aryl/perfluoroaryl co-crystals. Polymer Chemistry, 2022, 13, 1359-1368.	1.9	5
184	Theoretical Studies of Furan and Thiophene Nanothreads: Structures, Cycloaddition Barriers, and Activation Volumes. Journal of the American Chemical Society, 2022, 144, 9044-9056.	6.6	5
185	Anharmonic phonons and site selective isotope effects in YBa2â^'xMxCu3O7 (M = La, Sr). Solid State Communications, 1993, 86, 161-164.	0.9	3
186	Inverse isotope effects and models for high-Tcsuperconductivity. Physical Review B, 1993, 47, 5528-5530.	1.1	3
187	Flatland exposed. Physics Magazine, 2008, 1, .	0.1	3
188	Theory of a three-dimensional nanoporous silicon lattice with unsaturated bonding. Applied Physics Letters, 2010, 97, 121906.	1.5	3
189	Superconducting Properties of K3C60 and Rb3C60 Single Crystals in High Fields. Molecular Crystals and Liquid Crystals, 1994, 245, 333-337.	0.3	2
190	Validity of the BCS model Hamiltonian in the limit of small sizes. Physical Review B, 2000, 62, 8669-8670.	1.1	2
191	Catalytic Nanomotors: Autonomous Movement of Striped Nanorods ChemInform, 2004, 35, no.	0.1	2
192	High pressure CVD inside microstructured optical fibres. , 2006, , .		2
193	Coupling Between Colloidal Assemblies Can Drive a Bistableâ€ŧoâ€Oscillatory Transition. ChemSystemsChem, 2020, 2, e1900036.	1.1	2
194	Synthesizing carbon nanothreads from benzene. SPIE Newsroom, 0, , .	0.1	2
195	Sliding, stretching, and tapering: recent structural results for carbon nanotubes. , 1999, , .		1
196	The Geometry of Nanoscale Carbon. Nanostructure Science and Technology, 2004, , 103-118.	0.1	1
197	An algorithm to sculpt photon dispersion in a subwavelength nanostructure. Applied Physics Letters, 2009, 94, 041115.	1.5	1
198	Observation of a Quasi-ordered Structure in Monolayer W x Mo (1-x) S 2 Alloys. Microscopy and Microanalysis, 2016, 22, 1548-1549.	0.2	1

#	Article	IF	CITATIONS
199	Adsorption-induced shape transitions in bistable nanopores with atomically thin walls. Physical Review E, 2017, 95, 012804.	0.8	1
200	Dual-Sided Adsorption: Devil's Staircase of Coverage Fractions. Physical Review Letters, 2018, 120, 056101.	2.9	1
201	Communicating through a sea of frustration: Zero-temperature triangular Ising antiferromagnet on a cylinder. Physical Review E, 2018, 98, .	0.8	1
202	Cryogenic Transmission Electron Microscopy Investigation of Carbon Nanothreads. Microscopy and Microanalysis, 2021, 27, 684-685.	0.2	1
203	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .		1
204	Uperconductivity in Fulleride. , 2005, , 231-253.		0
205	Deposition of electronic materials inside microstructured optical fibres for novel device applications. , 2008, , .		0
206	Lithographically Fabricated 10-Micron Scale Autonomous Motors. Materials Research Society Symposia Proceedings, 2008, 1135, 30901.	0.1	0
207	Peter Clay Eklund: a scientific biography. Journal of Physics Condensed Matter, 2010, 22, 330301.	0.7	0
208	Editorial: Welcome to AIP Advances—a new open-access journal from the American Institute of Physics. AIP Advances, 2011, 1, 010401.	0.6	0
209	Theory of Electrocaloric Effect in a Shape-Changing Container: Gas in a Nanotube. Physical Review Letters, 2014, 113, 265501.	2.9	0
210	Ultra-low thermal conductivity and acoustic dynamics of Si nanostructured metalattices probed using ultrafast high harmonic beams. EPJ Web of Conferences, 2019, 205, 04006.	0.1	0
211	Electronic and Plasmonic Materials Inside Microstructured Optical Fibers. , 2007, , .		0
212	Rankings of Research-Active Departments. Science, 1999, 285, 1355-1355.	6.0	0
213	Mutual information and breakdown of the Perron-Frobenius scenario in zero-temperature triangular Ising antiferromagnets on cylinders. Physical Review E, 2022, 105, 044105.	0.8	0
214	Direct observation of topological magnetic monopoles using soft x-ray vector ptychography at 10 nm resolution. , 2022, , .		0