## Eita Shoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9022551/publications.pdf Version: 2024-02-01



Ειτλ Shou

| #  | ARTICLE                                                                                                                                                                                                                                                                                                               | IF       | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 1  | Design guideline for multi-cylinder-type liquid-piston Stirling engine. Applied Thermal Engineering,<br>2022, 200, 117635.                                                                                                                                                                                            | 3.0      | 6            |
| 2  | Numerical Simulation of Laminar-Turbulent Transition in Magnetohydrodynamic Convection in an<br>Electromagnetically Levitated Molten Droplet of Cu-Co Alloys Under a Static Magnetic Field.<br>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,<br>2021, 52, 896-902. | 1.0      | 6            |
| 3  | Evaluation of the work of adhesion at the interface between a surface-modified metal oxide and an organic solvent using molecular dynamics simulations. Journal of Chemical Physics, 2021, 154, 114703.                                                                                                               | 1.2      | 14           |
| 4  | Numerical investigation of growth interface shape and compositional distributions in SiGe crystals<br>grown by the TLZ method in the International Space Station. Journal of Crystal Growth, 2021, 566-567,<br>126157.                                                                                                | 0.7      | 0            |
| 5  | Measurement of dynamic wetting using phase-shifting imaging ellipsometer: comparison of pure<br>solvent and nanoparticle suspension on film thickness profile, apparent contact angle, and precursor<br>film length. Experiments in Fluids, 2021, 62, 1.                                                              | 1.1      | 2            |
| 6  | Control of the temperature responsiveness of poly(N-isopropylacrylamide-co-2-hydroxyethyl) Tj ETQq0 0 0 rgBT                                                                                                                                                                                                          | Overlock | 10 Tf 50 542 |
| 7  | Neutron computed tomography of phase separation structures in solidified Cu Co alloys and investigation of relationship between the structures and melt convection during solidification. Scripta Materialia, 2020, 175, 29-32.                                                                                       | 2.6      | 16           |
| 8  | Spatial structures formation of surface-modified nanoparticles in polymer nanocomposite thin films.<br>Chemical Engineering and Processing: Process Intensification, 2020, 155, 108054.                                                                                                                               | 1.8      | 2            |
| 9  | Compositional Dependence of Thermal Conductivity of Molten Cu-Fe Alloy at Low Fe Contents.<br>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,<br>2020, 51, 2504-2509.                                                                                                | 1.0      | 2            |
| 10 | In-situ visualization of heavy oil behavior in supercritical water using neutron radiography. Chemical<br>Engineering Science, 2020, 225, 115816.                                                                                                                                                                     | 1.9      | 7            |
| 11 | Prediction of Surface Tension of Heavy Oil Based on Principle of Corresponding States Combined with<br>Detailed Composition and Molecular Structure Analysis. Nihon Enerugi Gakkaishi/Journal of the Japan<br>Institute of Energy, 2020, 99, 75-81.                                                                   | 0.2      | 0            |
| 12 | Compositional Dependence of Normal Spectral Emissivity of Molten Cu-Fe Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2454-2458.                                                                                                                   | 1.0      | 4            |
| 13 | Numerical Simulation of Structure Formation of Surface-Modified Nanoparticles during Solvent<br>Evaporation. Journal of Chemical Engineering of Japan, 2019, 52, 680-693.                                                                                                                                             | 0.3      | 4            |
| 14 | Flow visualization of heavy oil in a packed bed using real-time neutron radiography. Chemical<br>Engineering Science, 2019, 196, 425-432.                                                                                                                                                                             | 1.9      | 8            |
| 15 | Effects of vertical, horizontal and rotational magnetic fields on convection in an<br>electromagnetically levitated droplet. International Journal of Heat and Mass Transfer, 2019, 130,<br>787-796.                                                                                                                  | 2.5      | 8            |
| 16 | Three-step phase-shifting imaging ellipsometry to measure nanofilm thickness profiles. Optics and<br>Lasers in Engineering, 2019, 112, 145-150.                                                                                                                                                                       | 2.0      | 16           |
| 17 | Experimental evaluation of thermal radiation effects on natural convection with a Rayleigh number<br>of 108–109 by using an interferometer. International Journal of Heat and Mass Transfer, 2019, 132,<br>1239-1249.                                                                                                 | 2.5      | 18           |
| 18 | Effect of Surface Modifier of Nanoparticles on Dewetting Behaviors of Polymer Nanocomposite Thin<br>Films. Journal of Chemical Engineering of Japan, 2018, 51, 282-288.                                                                                                                                               | 0.3      | 3            |

Ειτα Shoji

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thermal Conductivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator<br>Superimposed with a Static Magnetic Field. Metallurgical and Materials Transactions B: Process<br>Metallurgy and Materials Processing Science, 2017, 48, 3213-3218. | 1.0 | 5         |
| 20 | Measurement of transient heat transfer in vicinity of gas–liquid interface using high-speed<br>phase-shifting interferometer. International Communications in Heat and Mass Transfer, 2017, 89, 57-63.                                                           | 2.9 | 12        |
| 21 | Visualization of density distribution during dissociation at the methane hydrate interface. The<br>Proceedings of Conference of Tohoku Branch, 2017, 2017.52, 151.                                                                                               | 0.0 | 0         |
| 22 | Experimental Study of Methane Hydrate Dissociation and Gas Production Behaviors under<br>Depressurization. International Journal of Mechanical Engineering and Robotics Research, 2017, ,<br>140-146.                                                            | 0.7 | 3         |
| 23 | Numerical analysis of core-scale methane hydrate dissociation dynamics and multiphase flow in porous media. Chemical Engineering Science, 2016, 153, 221-235.                                                                                                    | 1.9 | 43        |
| 24 | High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement. Applied Optics, 2015, 54, 6297.                                                                                                                       | 2.1 | 21        |
| 25 | Quantitative visualization of boundary layers by developing quasi-common-path phase-shifting interferometer. Experimental Thermal and Fluid Science, 2015, 60, 231-240.                                                                                          | 1.5 | 14        |
| 26 | Development of quasi common path phase-shifting interferometer for measurement of natural convection fields. International Journal of Heat and Mass Transfer, 2012, 55, 7460-7470.                                                                               | 2.5 | 18        |
| 27 | Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions. Optics and Lasers in Engineering, 2012, 50, 1287-1296.                                                                                    | 2.0 | 52        |
| 28 | 238 Accurate Measurernent of Natural Convection Fields by Commo-Path Phase-Shifting<br>Interferometer. The Proceedings of Conference of Tohoku Branch, 2012, 2012.47, 282-283.                                                                                   | 0.0 | 0         |