## Roberta Cipullo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9022516/publications.pdf

Version: 2024-02-01

98 papers 4,666 citations

38 h-index 106344 65 g-index

100 all docs

 $\begin{array}{c} 100 \\ \\ \text{docs citations} \end{array}$ 

100 times ranked 1562 citing authors

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microstructure of polypropylene. Progress in Polymer Science, 2001, 26, 443-533.                                                                                                                                                                                       | 24.7 | 404       |
| 2  | Nonconventional Catalysts for Isotactic Propene Polymerization in Solution Developed by Using High-Throughput-Screening Technologies. Angewandte Chemie - International Edition, 2006, 45, 3278-3283.                                                                  | 13.8 | 232       |
| 3  | High-Resolution13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Zieglerâ^'Natta Catalysts. 1. The "Model―System MgCl2/TiCl4â^'2,6-Dimethylpyridine/Al(C2H5)3. Macromolecules, 1999, 32, 4173-4182.                                          | 4.8  | 195       |
| 4  | Improving the Performance of Methylalumoxane: A Facile and Efficient Method to Trap "Free―<br>Trimethylaluminum. Journal of the American Chemical Society, 2003, 125, 12402-12403.                                                                                     | 13.7 | 174       |
| 5  | Effects of Regiochemical and Stereochemical Errors on the Course of Isotactic Propene Polyinsertion Promoted by Homogeneous Ziegler-Natta Catalysts. Macromolecules, 1994, 27, 7538-7543.                                                                              | 4.8  | 149       |
| 6  | Influence of Monomer Concentration on the Stereospecificity of 1-Alkene Polymerization Promoted by C2-symmetric ansa-Metallocene Catalysts. Journal of the American Chemical Society, 1994, 116, 9329-9330.                                                            | 13.7 | 143       |
| 7  | Periodic DFT and High-Resolution Magic-Angle-Spinning (HR-MAS) <sup>1</sup> H NMR Investigation of the Active Surfaces of MgCl <sub>2</sub> -Supported Zieglerâ 'Natta Catalysts. The MgCl <sub>2</sub> Matrix. Journal of Physical Chemistry C, 2008, 112, 1081-1089. | 3.1  | 123       |
| 8  | Polypropylene "Chain Shuttling―at Enantiomorphous and Enantiopure Catalytic Species:  Direct and Quantitative Evidence from Polymer Microstructure. Macromolecules, 2007, 40, 7736-7738.                                                                               | 4.8  | 111       |
| 9  | Intra- and Intermolecular NMR Studies on the Activation of Arylcyclometallated Hafnium<br>Pyridyl-Amido Olefin Polymerization Precatalysts. Journal of the American Chemical Society, 2008, 130,<br>10354-10368.                                                       | 13.7 | 107       |
| 10 | Block Copolymers of Highly Isotactic Polypropylene via Controlled Zieglerâ^'Natta Polymerization. Macromolecules, 2004, 37, 8201-8203.                                                                                                                                 | 4.8  | 101       |
| 11 | On the First Insertion of α-Olefins in Hafnium Pyridyl-Amido Polymerization Catalysts.<br>Organometallics, 2009, 28, 5445-5458.                                                                                                                                        | 2.3  | 98        |
| 12 | Influence of Zieglerâ-'Natta Catalyst Regioselectivity on Polypropylene Molecular Weight Distribution and Rheological and Crystallization Behavior. Macromolecules, 2004, 37, 9722-9727.                                                                               | 4.8  | 89        |
| 13 | Design of stereoselective Ziegler-Natta propene polymerization catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15321-15326.                                                                                     | 7.1  | 89        |
| 14 | Demystifying Ziegler–Natta Catalysts: The Origin of Stereoselectivity. ACS Catalysis, 2017, 7, 4509-4518.                                                                                                                                                              | 11.2 | 87        |
| 15 | The First Molecularly Characterized Isotactic Polypropylene-block-polyethylene Obtained via "Quasi-Living―Insertion Polymerization. Macromolecules, 2003, 36, 3806-3808.                                                                                               | 4.8  | 83        |
| 16 | Propene/Ethene-[1-13C] Copolymerization as a Tool for Investigating Catalyst Regioselectivity. MgCl2/Internal Donor/TiCl4â^'External Donor/AlR3Systems. Macromolecules, 2004, 37, 7437-7443.                                                                           | 4.8  | 80        |
| 17 | "Oscillating―Metallocene Catalysts: What Stops the Oscillation?. Journal of the American Chemical Society, 2003, 125, 5451-5460.                                                                                                                                       | 13.7 | 78        |
| 18 | Stopped-flow polymerizations of ethene and propene in the presence of the catalyst systemrac-Me2Si(2-methyl-4-phenyl-1-indenyl)2ZrCl2/methylaluminoxane. Macromolecular Rapid Communications, 1999, 20, 116-121.                                                       | 3.9  | 75        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mimicking Ziegler-Natta Catalysts in Homogeneous Phase, 1.C2-Symmetric Octahedral Zr(IV) Complexes with Tetradentate [ONNO]-Type Ligands. Macromolecular Rapid Communications, 2001, 22, 1405-1410.                  | 3.9  | 74        |
| 20 | Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 15-20.                                                                                                                                 | 1.1  | 73        |
| 21 | Hafnocenes and MAO: Beware of Trimethylaluminum!. Macromolecules, 2009, 42, 1789-1791.                                                                                                                               | 4.8  | 69        |
| 22 | "Oscillating―Metallocene Catalysts: How Do They Oscillate?. Angewandte Chemie - International Edition, 2002, 41, 505-508.                                                                                            | 13.8 | 67        |
| 23 | Accelerating the Research Approach to Ziegler–Natta Catalysts. Industrial & Engineering Chemistry Research, 2016, 55, 2686-2695.                                                                                     | 3.7  | 67        |
| 24 | Propene/Ethene-[1-13C] Copolymerization as a Tool for Investigating Catalyst Regioselectivity. 2. The MgCl2/TiCl4â-'AlR3 System. Macromolecules, 2003, 36, 2616-2622.                                                | 4.8  | 63        |
| 25 | Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 97-103.                                                                                                                                | 1.1  | 62        |
| 26 | Molecular Kinetic Study of "Chain Shuttling―Olefin Copolymerization. ACS Catalysis, 2018, 8, 5051-5061.                                                                                                              | 11.2 | 61        |
| 27 | "Uni et Trini― In Situ Diversification of (Pyridylamide)hafnium(IV) Catalysts. Macromolecules, 2009, 42, 4369-4373.                                                                                                  | 4.8  | 60        |
| 28 | C2-symmetric ansa-metallocene catalysts for propene polymerization: Stereoselectivity and enantioselectivity. Journal of Molecular Catalysis A, 1998, 128, 53-64.                                                    | 4.8  | 57        |
| 29 | Interfering Effects of Growing Chain Epimerization on Metallocene-Catalyzed Isotactic Propene Polymerization. Macromolecules, 1997, 30, 3971-3977.                                                                   | 4.8  | 56        |
| 30 | Growing chain isomerizations in metallocene-catalyzed Ziegler-Natta 1-alkene polymerization. Journal of Organometallic Chemistry, 1995, 497, 113-118.                                                                | 1.8  | 52        |
| 31 | New Evidence on the Nature of the Active Sites in Heterogeneous Zieglerâ <sup>*</sup> Natta Catalysts for Propene Polymerization. Macromolecules, 1997, 30, 4786-4790.                                               | 4.8  | 49        |
| 32 | Reactivity of Secondary Metalâ^'Alkyls in Catalytic Propene Polymerization: How Dormant Are "Dormant Chainsâ€?. Journal of the American Chemical Society, 2005, 127, 1608-1609.                                      | 13.7 | 49        |
| 33 | 1H NMR Analysis of Chain Unsaturations in Ethene/1-Octene Copolymers Prepared with Metallocene Catalysts at High Temperature. Macromolecules, 2005, 38, 6988-6996.                                                   | 4.8  | 48        |
| 34 | Improving the Behavior of Bis(phenoxyamine) Group 4 Metal Catalysts for Controlled Alkene Polymerization. Macromolecules, 2009, 42, 3869-3872.                                                                       | 4.8  | 48        |
| 35 | Propene/Ethene-[1-13C] Copolymerization as a Tool for Investigating Catalyst Regioselectivity. 1. Theory and Calibration. Macromolecules, 2002, 35, 1537-1542.                                                       | 4.8  | 46        |
| 36 | Highly Regioselective Transition-Metal-Catalyzed 1-Alkene Polymerizations:Â A Simple Method for the Detection and Precise Determination of Regioirregular Monomer Enchainments. Macromolecules, 1998, 31, 2387-2390. | 4.8  | 45        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Title is missing!. Die Makromolekulare Chemie, 1993, 194, 1079-1093.                                                                                                                                                                                            | 1.1  | 43        |
| 38 | Highâ€Throughput Screening in Olefinâ€Polymerization Catalysis: From Serendipitous Discovery Towards Rational Understanding. Macromolecular Rapid Communications, 2009, 30, 1697-1708.                                                                          | 3.9  | 42        |
| 39 | Structureâ^'Activity Relationship in Olefin Polymerization Catalysis: Is Entropy the Key?. Journal of the American Chemical Society, 2010, 132, 13651-13653.                                                                                                    | 13.7 | 40        |
| 40 | Connection of Stereoselectivity, Regioselectivity, and Molecular Weight Capability in <i>rac</i> -R′ <sub>2</sub> Type Catalysts. Macromolecules, 2018, 51, 8073-8083.                                                                                          | 4.8  | 40        |
| 41 | Advances in the 13C NMR characterization of ethene/propene copolymers, 1. Macromolecular Chemistry and Physics, 2002, 203, 1403-1412.                                                                                                                           | 2.2  | 39        |
| 42 | Backbone rearrangement during olefin capture as the rate limiting step in molecular olefin polymerization catalysis and its effect on comonomer affinity. Journal of Polymer Science Part A, 2017, 55, 2807-2814.                                               | 2.3  | 39        |
| 43 | Selectivity of Metallocene-Catalyzed Olefin Polymerization: A Combined Experimental and Quantum Mechanical Study. 1. Nonchiral Bis(cyclopentadienyl) Systems. Macromolecules, 2002, 35, 2835-2844.                                                              | 4.8  | 36        |
| 44 | Metallocene-Catalyzed Propene Polymerization:Â From Microstructure to Kinetics.Cs-Symmetricansa-Zirconocenes. Macromolecules, 2003, 36, 4258-4261.                                                                                                              | 4.8  | 36        |
| 45 | Of Poisons and Antidotes in Polypropylene Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8590-8594.                                                                                                                                            | 13.8 | 35        |
| 46 | Selectivity of Metallocene-Catalyzed Olefin Polymerization:Â A Combined Experimental and Quantum Mechanical Study. Theansa-Me2Si(Ind)2Zr andansa-Me2C(Cp)(Flu)Zr Systems. Macromolecules, 2003, 36, 8171-8177.                                                  | 4.8  | 34        |
| 47 | High-Field13C NMR Characterization of Ethene-1-13C/Propene Copolymers Prepared withCs-Symmetricansa-Metallocene Catalysts:Â A Deeper Insight into the Regio- and Stereoselectivity of Syndiotactic Propene Polymerization. Macromolecules, 1998, 31, 8720-8724. | 4.8  | 32        |
| 48 | Metallocene-Catalyzed Propene Polymerization:Â From Microstructure to Kinetics.<br>1.C2-Symmetricansa-Metallocenes and the "Trigger" Hypothesis. Macromolecules, 2002, 35, 349-354.                                                                             | 4.8  | 31        |
| 49 | Chain Transfer to Solvent in Propene Polymerization with Ti Cp-phosphinimide Catalysts: Evidence for Chain Termination via Ti–C Bond Homolysis. ACS Catalysis, 2016, 6, 7989-7993.                                                                              | 11.2 | 31        |
| 50 | An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to ansa-Zirconocene Catalysts for Isotactic Polypropylene. Polymers, 2020, 12, 1005.                                                                                            | 4.5  | 29        |
| 51 | Reactivity Trends of Lewis Acidic Sites in Methylaluminoxane and Some of Its Modifications. Inorganic Chemistry, 2020, 59, 5751-5759.                                                                                                                           | 4.0  | 28        |
| 52 | <i>ansa</i> -Zirconocene Catalysts for Isotactic-Selective Propene Polymerization at High Temperature:<br>A Long Story Finds a Happy Ending. Journal of the American Chemical Society, 2021, 143, 7641-7647.                                                    | 13.7 | 28        |
| 53 | Structure/Properties Relationship for Bis(phenoxyamine)Zr(IV)-Based Olefin Polymerization Catalysts: A Simple DFT Model To Predict Catalytic Activity. Macromolecules, 2012, 45, 4046-4053.                                                                     | 4.8  | 27        |
| 54 | Extraction of Reliable Molecular Information from Diffusion NMR Spectroscopy: Hydrodynamic Volume or Molecular Mass?. Chemistry - A European Journal, 2019, 25, 9930-9937.                                                                                      | 3.3  | 26        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | BHT-Modified MAO: Cage Size Estimation, Chemical Counting of Strongly Acidic Al Sites, and Activation of a Ti-Phosphinimide Precatalyst. ACS Catalysis, 2019, 9, 2996-3010.                                                               | 11.2 | 26        |
| 56 | High-Throughput Experimentation in Olefin Polymerization Catalysis: Facing the Challenges of Miniaturization. Industrial & Engineering Chemistry Research, 2020, 59, 13940-13947.                                                         | 3.7  | 26        |
| 57 | A Systematic Study of the Temperature-Induced Performance Decline of <i>ansa</i> -Metallocenes for iPP. Macromolecules, 2020, 53, 9325-9336.                                                                                              | 4.8  | 26        |
| 58 | Methylaluminoxane's Molecular Cousin: A Well-defined and "Complete―Al-Activator for Molecular Olefin Polymerization Catalysts. ACS Catalysis, 2021, 11, 4464-4475.                                                                        | 11.2 | 26        |
| 59 | Syndiotactic Poly(propylene) from [Me2Si(3,6-di-tert-butyl-9-fluorenyl)(N-tert-butyl)]TiCl2–Based Catalysts: Chain-End or Enantiotopic-Sites Stereocontrol?. Macromolecular Chemistry and Physics, 2003, 204, 1269-1274.                  | 2,2  | 25        |
| 60 | Living Ziegler-Natta Polymerizations: True or False?. Macromolecular Symposia, 2005, 226, 1-16.                                                                                                                                           | 0.7  | 25        |
| 61 | On the Nature of the Lewis Acidic Sites in "TMAâ€Free―Phenolâ€Modified Methylaluminoxane. European<br>Journal of Inorganic Chemistry, 2020, 2020, 1088-1095.                                                                              | 2.0  | 25        |
| 62 | Ziegler–Natta Catalysts: Regioselectivity and "Hydrogen Response― ACS Catalysis, 2020, 10, 644-651.                                                                                                                                       | 11.2 | 23        |
| 63 | Alk-1-ene Polymerization in the Presence of a Monocyclopentadienyl Zirconium(IV) Acetamidinate<br>Catalyst: Microstructural and Mechanistic Insights. Macromolecular Rapid Communications, 2007, 28,<br>1128-1134.                        | 3.9  | 22        |
| 64 | Yield behavior of random copolymers of isotactic polypropylene. Polymer, 2017, 129, 235-246.                                                                                                                                              | 3.8  | 21        |
| 65 | Relationships among lamellar morphology parameters, structure and thermal behavior of isotactic propene-pentene copolymers: The role of incorporation of comonomeric units in the crystals. European Polymer Journal, 2018, 103, 251-259. | 5.4  | 21        |
| 66 | Internal Donors in Ziegler–Natta Systems: is Reduction by AlR <sub>3</sub> a Requirement for Donor Cleanâ€Up?. ChemCatChem, 2018, 10, 984-988.                                                                                            | 3.7  | 21        |
| 67 | Identification and Count of the Active Sites in Olefin Polymerization Catalysis by Oxygen Quench. Macromolecular Chemistry and Physics, 2014, 215, 1728-1734.                                                                             | 2.2  | 20        |
| 68 | Olefin polymerisation catalysts: when perfection is not enough. Dalton Transactions, 2015, 44, 12304-12311.                                                                                                                               | 3.3  | 20        |
| 69 | On the limits of tuning comonomer affinity of  Spaleck-type' <i>ansa</i> -zirconocenes in ethene/1-hexene copolymerization: a high-throughput experimentation/QSAR approach. Dalton Transactions, 2020, 49, 10162-10172.                  | 3.3  | 19        |
| 70 | High Throughput Experimentation Protocol for Quantitative Measurements of Regioselectivity in Ziegler–Natta Polypropylene Catalysis. Industrial & Engineering Chemistry Research, 2019, 58, 14729-14735.                                  | 3.7  | 18        |
| 71 | <i>C</i> <sub>1</sub> -Symmetric Si-bridged (2-indenyl)(1-indenyl) <i>ansa</i> metallocenes as efficient ethene/1-hexene copolymerization catalysts. Dalton Transactions, 2020, 49, 3015-3025.                                            | 3.3  | 17        |
| 72 | In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization. Macromolecules, 2021, 54, 10891-10902.                                                                             | 4.8  | 17        |

| #  | Article                                                                                                                                                                                                | IF           | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 73 | Catalyst Mileage in Olefin Polymerization: The Peculiar Role of Toluene. Organometallics, 2018, 37, 2872-2879.                                                                                         | 2.3          | 15        |
| 74 | Alkynyl Ether Labeling: A Selective and Efficient Approach to Count Active Sites of Olefin Polymerization Catalysts. ACS Catalysis, 2019, 9, 3098-3103.                                                | 11.2         | 15        |
| 75 | Structureâ€Activity Relationships for Bis(phenolateâ€ether) Zr/Hf Propene Polymerization Catalysts.<br>European Journal of Inorganic Chemistry, 2020, 2020, 541-550.                                   | 2.0          | 14        |
| 76 | Toluene and α-Olefins as Radical Scavengers: Direct NMR Evidence for Homolytic Chain Transfer Mechanism Leading to Benzyl and "Dormant―Titanium Allyl Complexes. Organometallics, 2018, 37, 4189-4194. | 2.3          | 13        |
| 77 | Transmission electron microscopy analysis of multiblock ethylene/1-octene copolymers. Polymer, 2020, 193, 122347.                                                                                      | 3.8          | 12        |
| 78 | Role of Solvent Coordination on the Structure and Dynamics of <i>ansa</i> -Zirconocenium Ion Pairs in Aromatic Hydrocarbons. Organometallics, 2022, 41, 547-560.                                       | 2.3          | 11        |
| 79 | Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules, 2022, 55, 5017-5026.                                    | 4.8          | 11        |
| 80 | "Chain-End-Controlled Isotactic―and "Stereoblock-Isotactic―Polypropylene: Where Is the Difference?. Israel Journal of Chemistry, 2002, 42, 295-299.                                                    | 2.3          | 9         |
| 81 | Separating Electronic from Steric Effects in Ethene/α-Olefin Copolymerization: A Case Study on Octahedral [ONNO] Zr-Catalysts. Processes, 2019, 7, 384.                                                | 2.8          | 9         |
| 82 | Hafnium vs. Zirconium, the Perpetual Battle for Supremacy in Catalytic Olefin Polymerization: A Simple Matter of Electrophilicity?. Polymers, 2021, 13, 2621.                                          | 4.5          | 9         |
| 83 | Selection of Low-Dimensional 3-D Geometric Descriptors for Accurate Enantioselectivity Prediction. ACS Catalysis, 2022, 12, 6934-6945.                                                                 | 11.2         | 9         |
| 84 | Thermal Fractionation of Ethylene/1-Octene Multiblock Copolymers from Chain Shuttling Polymerization. Macromolecules, 2022, 55, 5656-5668.                                                             | 4.8          | 9         |
| 85 | Monitoring the Kinetics of Internal Donor Clean-up from Ziegler–Natta Catalytic Surfaces: An Integrated Experimental and Computational Study. Journal of Physical Chemistry C, 2020, 124, 14245-14252. | 3.1          | 8         |
| 86 | Chain Transfer to Solvent and Monomer in Early Transition Metal Catalyzed Olefin Polymerization: Mechanisms and Implications for Catalysis. Catalysts, 2021, 11, 215.                                  | 3 <b>.</b> 5 | 8         |
| 87 | Of Poisons and Antidotes in Polypropylene Catalysis. Angewandte Chemie, 2016, 128, 8732-8736.                                                                                                          | 2.0          | 6         |
| 88 | Regioirregular Monomeric Units in Ziegler–Natta Polypropylene: A Sensitive Probe of the Catalytic Sites. Macromolecules, 2020, 53, 3789-3795.                                                          | 4.8          | 5         |
| 89 | Polyolefin chain shuttling at ansa-metallocene catalysts: legend and reality. European Polymer<br>Journal, 2021, 150, 110396.                                                                          | 5.4          | 5         |
| 90 | A Highâ€Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angewandte Chemie - International Edition, 2022, 61, .                                               | 13.8         | 5         |

| #  | Article                                                                                                                                                       | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | From Mechanistic Investigation to Quantitative Prediction. , 2019, , 287-326.                                                                                 |     | 4         |
| 92 | New insight into propene polymerization promoted by heterogeneous Ziegler-Natta catalysts. , $1999$ , , $76-88$ .                                             |     | 3         |
| 93 | Assignment of Regioirregular Sequences in the 13C NMR Spectrum of Syndiotactic Polypropylene. Polymers, 2018, 10, 863.                                        | 4.5 | 2         |
| 94 | Synthesis and olefin polymerization performance of new ansa-zirconocene with OSiO-bridged bis(2-indenyl) ligand. Mendeleev Communications, 2020, 30, 449-452. | 1.6 | 2         |
| 95 | Microstructural insight on strain-induced crystallization of ethylene/propylene(/diene) random copolymers. Polymer, 2021, 227, 123848.                        | 3.8 | 2         |
| 96 | Internal Donors in Ziegler-Natta Systems: is Reduction by AlR3 a Requirement for Donor Clean-Up?. ChemCatChem, 2018, 10, 863-863.                             | 3.7 | 1         |
| 97 | Synthesis, structure and properties of copolymers of syndiotactic polypropylene with 1-hexene and 1-octene. Polymer Chemistry, $0$ , , .                      | 3.9 | 1         |
| 98 | A Highâ€Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling.<br>Angewandte Chemie, 0, , .                                | 2.0 | 0         |