Min Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902235/publications.pdf

Version: 2024-02-01

		16411	23472
380	15,114	64	111
papers	citations	h-index	g-index
384	384	384	9738
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-objective thermo-economic optimization of Collins cycle. Energy, 2022, 239, 122269.	4.5	4
2	Lightâ€Induced Inâ€Plane Rotation of Microobjects on Microfibers. Laser and Photonics Reviews, 2022, 16, .	4.4	5
3	Efficient modal analysis of plasmonic nanoparticles: from retardation to nonclassical regimes. Nanophotonics, 2022, 11, 1887-1895.	2.9	2
4	Narrowband diffuse thermal emitter based on surface phonon polaritons. Nanophotonics, 2022, 11, 4115-4122.	2.9	11
5	Recording Messages on Nonplanar Objects by Cryogenic Electronâ€Beam Writing. Advanced Functional Materials, 2022, 32, .	7.8	5
6	3D Nanoprinting by Electron-Beam with an Ice Resist. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1652-1658.	4.0	4
7	Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes. Applied Physics Letters, 2022, 120, .	1.5	9
8	Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light: Science and Applications, 2022, 11, 122.	7.7	56
9	Bifacial omnidirectional and band-tunable light absorption in free-standing core–shell resonators. Applied Physics Letters, 2022, 120, .	1.5	4
10	Ice-assisted electron-beam lithography for MoS ₂ transistors with extremely low-energy electrons. Nanoscale Advances, 2022, 4, 2479-2483.	2.2	1
11	Theoretical modeling of ice lithography on amorphous solid water. Nanoscale, 2022, 14, 9045-9052.	2.8	4
12	Two-photon direct laser writing of micro Fabry-Perot cavity on single-mode fiber for refractive index sensing. Optics Express, 2022, 30, 25536.	1.7	13
13	Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light: Science and Applications, 2022, 11, .	7.7	35
14	Sub-Block Rearranged Staircase Codes. IEEE Transactions on Communications, 2022, 70, 5695-5710.	4.9	3
15	Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science and Applications, 2022, 11 , .	7.7	108
16	Whole LWIR Directional Thermal Emission Based on ENZ Thin Films. Laser and Photonics Reviews, 2022, 16, .	4.4	21
17	Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics, 2022, 11, 3613-3622.	2.9	23
18	Lithographic properties of amorphous solid water upon exposure to electrons. Applied Surface Science, 2021, 539, 148265.	3.1	6

#	Article	IF	Citations
19	Windowed Decoding for Delayed Bit-Interleaved Coded Modulation. IEEE Communications Letters, 2021, 25, 3483-3487.	2.5	4
20	Discrete Signaling and Treating Interference as Noise for the Gaussian Interference Channel. IEEE Transactions on Information Theory, 2021, 67, 7253-7284.	1.5	6
21	Partially Information Coupled Bit-Interleaved Polar Coded Modulation. IEEE Transactions on Communications, 2021, 69, 6409-6423.	4.9	7
22	On-chip optical tweezers based on freeform optics. Optica, 2021, 8, 409.	4.8	37
23	Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 2021, 12, 1805.	5.8	184
24	Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Letters, 2021, 21, 3879-3886.	4. 5	124
25	Analysis and Design of Partially Information- and Partially Parity-Coupled Turbo Codes. IEEE Transactions on Communications, 2021, 69, 2107-2122.	4.9	13
26	Infrared Camouflage Utilizing Ultrathin Flexible Largeâ€Scale Highâ€Temperatureâ€Tolerant Lambertian Surfaces. Laser and Photonics Reviews, 2021, 15, 2000391.	4.4	23
27	Design and Analysis of Delayed Bit-Interleaved Coded Modulation With LDPC Codes. IEEE Transactions on Communications, 2021, 69, 3556-3571.	4.9	17
28	Electron-Beam Irradiation Induced Regulation of Surface Defects in Lead Halide Perovskite Thin Films. Research, 2021, 2021, 9797058.	2.8	9
29	Nonvolatile Optically Reconfigurable Radiative Metasurface with Visible Tunability for Anticounterfeiting. Nano Letters, 2021, 21, 5269-5276.	4.5	72
30	Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nature Communications, 2021, 12, 4332.	5.8	20
31	Generalized Spatially Coupled Parallel Concatenated Convolutional Codes With Partial Repetition. , 2021, , .		5
32	MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies. Microsystems and Nanoengineering, 2021, 7, 59.	3.4	39
33	Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime. Light: Science and Applications, 2021, 10, 193.	7.7	11
34	Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica, 2021, 8, 1290.	4.8	75
35	Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display. Nanophotonics, 2021, 10, 4125-4131.	2.9	14
36	Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2021, 2, .	5 . 5	38

#	Article	IF	Citations
37	Connecting Spatially Coupled LDPC Code Chains for Bit-Interleaved Coded Modulation. , 2021, , .		2
38	Delayed Bit-Interleaved Polar Coded Modulation with Superposition Gray Labeling. , 2021, , .		1
39	Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 2020, 69, 104449.	8.2	164
40	Study on cooling capacity characteristics of an open-cycle Joule-Thomson cryocooler working at liquid helium temperature. Applied Thermal Engineering, 2020, 166, 114667.	3.0	13
41	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. Laser and Photonics Reviews, 2020, 14, 1900162.	4.4	103
42	Experimental study on a floating scroll-type compressor driving a precooled JT cryocooler. Applied Thermal Engineering, 2020, 178, 115627.	3.0	9
43	Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography. Nano Letters, 2020, 20, 8841-8846.	4.5	31
44	Direct electron-beam patterning of monolayer MoS ₂ with ice. Nanoscale, 2020, 12, 22473-22477.	2.8	13
45	Remote structuring of near-field landscapes. Science, 2020, 369, 436-440.	6.0	17
46	Partially Information Coupled Duo-Binary Turbo Codes., 2020,,.		3
47	On Discrete Signaling and Treating Interference as Noise for Complex Gaussian Interference Channels. , 2020, , .		1
48	Flat photonics for broadband light-trapping. Applied Physics Letters, 2020, 117, .	1.5	5
49	Directional and Spectral Control of Thermal Emission and Its Application in Radiative Cooling and Infrared Light Sources. Physical Review Applied, 2020, 13, .	1.5	16
50	Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory. Physical Review Letters, 2020, 125, 013901.	2.9	39
51	Monolayer Conveyor for Stably Trapping and Transporting Subâ€1Ânm Particles. Laser and Photonics Reviews, 2020, 14, 2000030.	4.4	17
52	Development of an in-situ nanofabrication instrument for ice lithography. Microelectronic Engineering, 2020, 224, 111251.	1.1	10
53	Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Physical Review Letters, 2020, 124, 063902.	2.9	85
54	Two-dimensional optical edge detection. Nature Photonics, 2020, 14, 268-269.	15.6	7

#	Article	IF	Citations
55	High- <i>Q</i> All-Dielectric Metasurface: Super and Suppressed Optical Absorption. ACS Photonics, 2020, 7, 1436-1443.	3.2	137
56	High-temperature infrared camouflage with efficient thermal management. Light: Science and Applications, 2020, 9, 60.	7.7	187
57	Inverse design of an integrated-nanophotonics optical neural network. Science Bulletin, 2020, 65, 1177-1183.	4.3	44
58	Tunable metasurfaces based on phase-change materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154202.	0.2	5
59	Spatial and dynamical multi-level control over thermal emission. , 2020, , .		0
60	Transfer Learning for Nanophotonics. , 2019, , .		2
61	An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy, 2019, 65, 103998.	8.2	103
62	Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Advanced Optical Materials, 2019, 7, 1900595.	3.6	123
63	Downlink NOMA Without SIC for Fast Fading Channels: Lattice Partitions with Algebraic Rotations. , 2019, , .		2
64	Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Applied Physics Letters, 2019, 115, .	1.5	11
65	A Two-Stage Beam Alignment Framework for Hybrid MmWave Distributed Antenna Systems. , 2019, , .		6
66	Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nature Communications, 2019, 10, 396.	5.8	162
67	Ice lithography for 3D nanofabrication. Science Bulletin, 2019, 64, 865-871.	4.3	38
68	Downlink Non-Orthogonal Multiple Access Without SIC for Block Fading Channels: An Algebraic Rotation Approach. IEEE Transactions on Wireless Communications, 2019, 18, 3903-3918.	6.1	28
69	Migrating Knowledge between Physical Scenarios Based on Artificial Neural Networks. ACS Photonics, 2019, 6, 1168-1174.	3.2	85
70	Generalized Spatial Differentiation from the Spin Hall Effect of Light and Its Application in Image Processing of Edge Detection. Physical Review Applied, 2019, 11, .	1.5	198
71	Nanoscale Lamb wave–driven motors in nonliquid environments. Science Advances, 2019, 5, eaau8271.	4.7	30
72	Atomic switches of metallic point contacts by plasmonic heating. Light: Science and Applications, 2019, 8, 34.	7.7	26

#	Article	IF	Citations
73	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, 2019, 11, .	1.5	21
74	Constructing Metal Arch Nanobridges Utilizing a Photothermalâ€Induced Nanobonding Technique. Advanced Electronic Materials, 2019, 5, 1800807.	2.6	5
75	Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 1333-1341.	7.3	29
76	Density Evolution Analysis of Partially Information Coupled Turbo Codes on the Erasure Channel. , 2019, , .		5
77	Multiuser MISO Broadcast Channels with Imperfect CSI: Discrete Signaling without SIC., 2019,,.		2
78	Lattice-Partition-Based Downlink Non-Orthogonal Multiple Access Without SIC for Slow Fading Channels. IEEE Transactions on Communications, 2019, 67, 1166-1181.	4.9	24
79	Optical computing of spatial differentiation without Fourier optics. , 2019, , .		0
80	Plasmonic-enhanced targeted nanohealing of metallic nanostructures. Applied Physics Letters, 2018, 112, .	1.5	14
81	A Lattice-Partition Framework of Downlink Non-Orthogonal Multiple Access Without SIC. IEEE Transactions on Communications, 2018, 66, 2532-2546.	4.9	35
82	Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 2018, 10, 4415-4420.	2.8	51
83	Photothermalâ€Induced Nanowelding of Metal–Semiconductor Heterojunction in Integrated Nanowire Units. Advanced Electronic Materials, 2018, 4, 1700614.	2.6	24
84	Thermodynamic assessment of solar photon-enhanced thermionic conversion. Applied Energy, 2018, 223, 134-145.	5.1	19
85	On the Design of Multi-Dimensional Irregular Repeat-Accumulate Lattice Codes. IEEE Transactions on Communications, 2018, 66, 478-492.	4.9	9
86	Downlink Lattice-Partition-Based Non-Orthogonal Multiple Access without SIC for Slow Fading Channels. , $2018, , .$		3
87	Adaptive thermal camouflage based on phase-changing material GST. , 2018, , .		0
88	Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances. Optics Express, 2018, 26, 23918.	1.7	40
89	Polarization-Independent Optical Broadband Angular Selectivity. ACS Photonics, 2018, 5, 4125-4131.	3.2	26
90	Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge ₂ Sb ₂ Te ₅ . Optical Materials Express, 2018, 8, 2312.	1.6	27

#	Article	IF	Citations
91	Thermal camouflage based on the phase-changing material GST. Light: Science and Applications, 2018, 7, 26.	7.7	255
92	Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice. Nano Letters, 2018, 18, 5036-5041.	4.5	46
93	Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. Optics Express, 2018, 26, 4279.	1.7	28
94	Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Optics Express, 2018, 26, 17772.	1.7	32
95	Nearâ€Infrared Superâ€Absorbing Allâ€Dielectric Metasurface Based on Singleâ€Layer Germanium Nanostructures. Laser and Photonics Reviews, 2018, 12, 1800076.	4.4	70
96	Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress. Optics Letters, 2018, 43, 2422.	1.7	5
97	Terminated Staircase Codes for NAND Flash Memories. IEEE Transactions on Communications, 2018, 66, 5861-5875.	4.9	9
98	Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials. Optics Letters, 2018, 43, 1295.	1.7	32
99	Au ₈₀ Sn ₂₀ -based targeted noncontact nanosoldering with low power consumption. Optics Letters, 2018, 43, 4989.	1.7	6
100	Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon. Optics Letters, 2018, 43, 5230.	1.7	34
101	Ferroelectric Metasurfaces for THz Wave Manipulation. , 2018, , .		0
102	Demonstration of terahertz ferroelectric metasurface using a simple and scalable fabrication method. Optics Express, 2018, 26, 27917.	1.7	2
103	Optically controllable nanobreaking of metallic nanowires. Applied Physics Letters, 2017, 110, .	1.5	9
104	Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force. Physical Review Letters, 2017, 118, 043601.	2.9	86
105	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- <i>$^1\mu$</i> $^1\mu$	1.5	128
106	Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science and Applications, 2017, 6, e16194-e16194.	7.7	236
107	Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano Letters, 2017, 17, 3246-3251.	4.5	60
108	Plasmonic computing of spatial differentiation. Nature Communications, 2017, 8, 15391.	5.8	292

#	Article	IF	Citations
109	Chip-Scale Plasmonic Sum Frequency Generation. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	4
110	Controlling fluorescence emission with splitâ€ringâ€resonatorâ€based plasmonic metasurfaces. Laser and Photonics Reviews, 2017, 11, 1600299.	4.4	25
111	Efficient Plasmonic Gas Sensing Based on Cavity-Coupled Metallic Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 24740-24744.	1.5	21
112	On the design of multi-dimensional irregular repeat-accumulate lattice codes. , 2017, , .		1
113	Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phaseâ€Changing Material GST. Laser and Photonics Reviews, 2017, 11, 1700091.	4.4	180
114	Thermionic energy conversion for concentrating solar power. Applied Energy, 2017, 208, 1318-1342.	5.1	72
115	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. ACS Nano, 2017, 11, 7915-7924.	7.3	32
116	Light-induced reversible expansion of individual gold nanoplates. AIP Advances, 2017, 7, .	0.6	3
117	Multimode directionality in all-dielectric metasurfaces. Physical Review B, 2017, 95, .	1.1	106
118	A Lattice-Partition Framework of Downlink Non-Orthogonal Multiple Access without SIC., 2017,,.		1
119	All-dielectric KTiOPO_4 metasurfaces based on multipolar resonances in the terahertz region. Optics Express, 2017, 25, 24068.	1.7	23
120	Strongly enhanced molecular fluorescence with ultra-thin optical magnetic mirror metasurfaces. Optics Letters, 2017, 42, 4478.	1.7	12
121	Wavelength-tunable thermal sources with nonvolatile phase changing material. , 2017, , .		0
122	Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase Changing Material GST. , 2017, , .		2
123	Dielectric optical antennas for light beam steering. , 2016, , .		O
124	Ultra-broad band absorber made by tungsten and aluminium. Journal of Physics: Conference Series, 2016, 680, 012039.	0.3	0
125	Identification and control of multiple leaky plasmon modes in silver nanowires. Laser and Photonics Reviews, 2016, 10, 278-286.	4.4	38
126	Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.	3.6	94

#	Article	IF	Citations
127	Optically controlled local nanosoldering of metal nanowires. Applied Physics Letters, 2016, 108, .	1.5	33
128	Irregular Repeat-Accumulate Lattice Network Codes for Two-Way Relay Channels., 2016,,.		3
129	Laser-induced single point nanowelding of silver nanowires. Applied Physics Letters, 2016, 108, .	1.5	43
130	Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting. Scientific Reports, 2016, 6, 29195.	1.6	14
131	Switchable absorber by vanadium dioxide. , 2016, , .		1
132	Laser assisted welding of layered metallic nanostructure., 2016,,.		0
133	All-Optical Switching Using a Hybrid Plasmonic Donut Resonator With Photothermal Absorber. IEEE Photonics Technology Letters, 2016, 28, 1609-1612.	1.3	12
134	Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Scientific Reports, 2016, 6, 19490.	1.6	67
135	Nanosoldering of hetero-structures consisting of silver nanowires and gold nanoplate for interconnect., 2016,,.		0
136	Sacrificial solder based nanowelding of ZnO nanowires. Journal of Physics: Conference Series, 2016, 680, 012027.	0.3	6
137	Photothermal Switching Based on Silicon Mach–Zehnder Interferometer Integrated With Light Absorber. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	14
138	5th International Conference on Advances in Optoelectronics and Micro/Nano-optics (AOM 2015). Journal of Physics: Conference Series, 2016, 680, 011001.	0.3	0
139	Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna. Nanoscale, 2016, 8, 4047-4053.	2.8	45
140	Illumination Dependent Optical Properties of Plasmonic Nanorods Coupled to Thin-Film Cavities. Plasmonics, 2016, 11, 1101-1107.	1.8	2
141	Laser assisted welding of gold nanowires. Journal of Physics: Conference Series, 2016, 680, 012028.	0.3	0
142	Fluorescence enhancement with metamaterial mirrors. Journal of Physics: Conference Series, 2016, 680, 012033.	0.3	1
143	Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Applied Physics Letters, 2015, 107, .	1.5	29
144	Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates. Scientific Reports, 2015, 5, 13424.	1.6	13

#	Article	IF	CITATIONS
145	Control of fluorescence enhancement and directionality upon excitations in a thin-film system. Physica Status Solidi (B): Basic Research, 2015, 252, 2222-2229.	0.7	3
146	Nanoscale Control of Temperature Distribution Using a Plasmonic Trimer. Plasmonics, 2015, 10, 911-918.	1.8	7
147	Probing Plasmonic Gap Resonances between Gold Nanorods and a Metallic Surface. Journal of Physical Chemistry C, 2015, 119, 18627-18634.	1.5	28
148	Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	41
149	Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires. Nano Letters, 2015, 15, 5513-5518.	4.5	13
150	Universal scaling behavior of the temperature increase of a heat nanoparticle on a substrate. Journal of Nanophotonics, 2015, 9, 093046.	0.4	0
151	Tunable unidirectional long-range surface plasmon polaritons launching based on nanoslits. , 2015, , .		0
152	Controlling the angular radiation of single emitters using dielectric patch nanoantennas. Applied Physics Letters, 2015, 107, 031109.	1.5	25
153	Metal-insulator-metal plasmonic absorbers: influence of lattice. Optics Express, 2014, 22, 30807.	1.7	27
154	Plasmonic sectoral horn nanoantennas. Optics Letters, 2014, 39, 3204.	1.7	28
155	All-optical switching of silicon disk resonator based on photothermal effect in metal–insulator–metal absorber. Optics Letters, 2014, 39, 4431.	1.7	23
156	Grating-assisted enhanced optical transmission through a seamless gold film. Optics Express, 2014, 22, 5416.	1.7	21
157	Whispering gallery mode nanodisk resonator based on layered metal-dielectric waveguide. Optics Express, 2014, 22, 8490.	1.7	13
158	Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Optics Express, 2014, 22, 25233.	1.7	15
159	Manipulating light absorption in dye-doped dielectric films on reflecting surfaces. Optics Express, 2014, 22, 25965.	1.7	19
160	Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Applied Physics Letters, 2014, 104, .	1.5	100
161	Film-coupled log-periodic optical antennas for near-infrared light absorption. , 2014, , .		0
162	Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles. Plasmonics, 2014, 9, 623-630.	1.8	38

#	Article	IF	Citations
163	Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale, 2014, 6, 1756-1762.	2.8	35
164	Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-12309.	2.8	43
165	Spatial control of surface plasmon polariton excitation at planar metal surface. Optics Letters, 2014, 39, 3587.	1.7	30
166	Photothermal Switching of SOI Waveguide-Based Mach-Zehnder Interferometer with Integrated Plasmonic Nanoheater. Plasmonics, 2014, 9, 1197-1205.	1.8	5
167	Plasmonic enhanced photothermal effects and its applications. , 2014, , .		0
168	Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Optics Letters, 2014, 39, 1137.	1.7	162
169	Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Scientific Reports, 2014, 4, 6080.	1.6	7
170	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale, 2013, 5, 3373.	2.8	36
171	On the jamming power allocation and signal design in DF relay networks. , 2013, , .		4
172	Sub-wavelength quarter-wave plate based on plasmonic patch antennas. Applied Physics Letters, 2013, 103, .	1.5	11
173	Light absorber based on nano-spheres on a substrate reflector. Optics Express, 2013, 21, 6697.	1.7	38
174	Two-Dimensional Analysis Photothermal Properties in Nanoscale Plasmonic Waveguides for Optical Interconnect. Journal of Lightwave Technology, 2013, 31, 4051-4056.	2.7	10
175	Reconfigurable Parallel Plasmonic Transmission Lines With Nanometer Light Localization and Long Propagation Distance. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4601809-4601809.	1.9	6
176	Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 2013, 21, 13125.	1.7	31
177	Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Applied Physics Letters, 2013, 102, 201109.	1.5	15
178	Surface waves on the relativistic quantum plasma half-space. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1736-1739.	0.9	27
179	Nanostructured plasmonic devices and their applications. , 2013, , .		0
180	Near-infrared broadband absorber with film-coupled multilayer nanorods. Optics Letters, 2013, 38, 2247.	1.7	68

#	Article	IF	CITATIONS
181	Plasmonic wave propagation in silver nanowires: guiding modes or not?. Optics Express, 2013, 21, 8587.	1.7	54
182	A plasmon ruler based on nanoscale photothermal effect. Optics Express, 2013, 21, 172.	1.7	62
183	Plasmonic analog of microstrip transmission line and effect of thermal annealing on its propagation loss. Optics Express, 2013, 21, 1639.	1.7	5
184	Hybrid photonic-plasmonic molecule based on metal/Si disks. Optics Express, 2013, 21, 11037.	1.7	22
185	Polarization-sensitive perfect absorbers at near-infrared wavelengths: Erratum. Optics Express, 2013, 21, A229.	1.7	9
186	Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance. Optics Express, 2013, 21, 20873.	1.7	27
187	Polarization-sensitive perfect absorbers at near-infrared wavelengths. Optics Express, 2013, 21, A111.	1.7	81
188	Transmission of Infrared Radiation Through Metallic Photonic Crystal Structures. IEEE Photonics Journal, 2013, 5, 4500608-4500608.	1.0	5
189	Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Optics Letters, 2012, 37, 4955.	1.7	38
190	Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures. Applied Physics Letters, 2012, 100, 043502.	1.5	16
191	Photothermal direct writing of metallic microstructure for frequency selective surface at terahertz frequencies., 2012,,.		1
192	Plasmonic devices for optical interconnect. , 2012, , .		1
193	Nanosecond Photothermal Effects in Plasmonic Nanostructures. ACS Nano, 2012, 6, 2550-2557.	7.3	344
194	Generalized nihility media from transformation optics. Journal of Optics (United Kingdom), 2011, 13, 024005.	1.0	13
195	Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics (United Kingdom), 2011, 13, 075002.	1.0	33
196	Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. Journal of Applied Physics, 2011, 109, .	1.1	71
197	Nearly total absorption of light and heat generation by plasmonic metamaterials. Physical Review B, 2011, 83, .	1.1	440
198	Subwavelength hybrid plasmonic nanodisk with high $\langle i \rangle Q \langle i \rangle$ factor and Purcell factor. Journal of Optics (United Kingdom), 2011, 13, 075001.	1.0	25

#	Article	IF	Citations
199	Manipulation of light with \hat{l}_{\pm} transformation media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1058.	0.8	3
200	Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering. Optics Express, 2011, 19, 3818.	1.7	18
201	Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles. Optics Express, 2011, 19, 7885.	1.7	11
202	Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Optics Express, 2011, 19, 14726.	1.7	108
203	Photothermal phenomena in plasmonics and metamaterials. , 2011, , .		0
204	Experimental Demonstration of Plasmon Propagation, Coupling, and Splitting in Silver Nanowire at 1550-nm Wavelength. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1107-1111.	1.9	27
205	Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Optics Communications, 2011, 284, 480-484.	1.0	28
206	Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Physical Review A, 2011, 83, .	1.0	11
207	Passive and active plasmonic nanoarray devices. , 2011, , .		2
208	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 \hat{l} 4m wavelength. Proceedings of SPIE, 2010, , .	0.8	0
209	High-Q photonic crystal surface-mode cavities on crystalline SOI structures. Optics Communications, 2010, 283, 2461-2464.	1.0	4
210	Manipulate light polarizations with metamaterials: From microwave to visible. Frontiers of Physics in China, 2010, 5, 291-307.	1.0	18
211	Photonic crystal surface mode microcavities. Frontiers of Physics in China, 2010, 5, 260-265.	1.0	3
212	Efficient coupler between silicon waveguide and hybrid plasmonic waveguide. , 2010, , .		0
213	Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97, .	1.5	45
214	Efficient coupler between silicon waveguide and hybrid plasmonic waveguide. , 2010, , .		2
215	High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96, .	1.5	1,071
216	Coupled mode theory analysis of mode-splitting in coupled cavity system. Optics Express, 2010, 18, 8367.	1.7	316

#	Article	IF	CITATIONS
217	Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18, 13173.	1.7	136
218	Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. Optics Express, 2010, 18, 15531.	1.7	36
219	Theoretical investigation on guiding IR light in hollow-core metallic fiber with corrugated inner surface. Optics Express, 2010, 18, 21959.	1.7	3
220	Design of invisibility cloaks with an open tunnel. Optics Express, 2010, 18, 27060.	1.7	5
221	Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35, 3153.	1.7	74
222	Integrated photonics in the future: Silicon, plasmonics or something else?. , 2010, , .		0
223	Efficient directional coupler based on plasmonic waveguide for photonic integrated circuits. , 2010, , .		0
224	Super-reflection and cloaking based on zero index metamaterial. Applied Physics Letters, 2010, 96, .	1.5	226
225	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 & amp; $\#$ x00B5; $\#$ x00B5; $\#$ x00B5, $\#$ x00B5, $\#$ x00B5, $\#$ x00B5, $\#$ x00B5, $\#$ x0D10, $\#$ x		0
226	Ultrathin wide-angle optical metamaterial absorber. , 2010, , .		0
226	Ultrathin wide-angle optical metamaterial absorber. , 2010, , . Silver nanowire based plasmon propagation, coupling and splitting at 1.55 î½m wavelength. , 2010, , .		0
		0.5	
227	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 μm wavelength. , 2010, , .	0.5	0
227	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 î½m wavelength., 2010,,. High-Q Photonic Crystal Microcavities. Springer Series in Optical Sciences, 2010,, 327-359. Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens. Physical		0
227 228 229	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 î¼m wavelength., 2010,,. High-Q Photonic Crystal Microcavities. Springer Series in Optical Sciences, 2010,, 327-359. Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens. Physical Review B, 2009, 79,.		0 0 11
227 228 229 230	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 î½m wavelength., 2010,,. High-Q Photonic Crystal Microcavities. Springer Series in Optical Sciences, 2010,, 327-359. Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens. Physical Review B, 2009, 79,. Optical signal processing in SOI waveguide devices., 2009,,.	1.1	0 0 11 0
227 228 229 230	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 νm wavelength., 2010,,. High-Q Photonic Crystal Microcavities. Springer Series in Optical Sciences, 2010,, 327-359. Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens. Physical Review B, 2009, 79,. Optical signal processing in SOI waveguide devices., 2009,,. Optical metamaterial for polarization control. Physical Review A, 2009, 80,.	1.1	0 0 11 0

#	Article	IF	Citations
235	Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Applied Physics Letters, 2009, 95, .	1.5	129
236	Optical Quality Improvement of Si Photonic Devices Fabricated by Focused-Ion-Beam Milling. Journal of Lightwave Technology, 2009, 27, 4306-4310.	2.7	11
237	Pulse Delay and Advancement in SOI Microring Resonators With Mutual Mode Coupling. Journal of Lightwave Technology, 2009, 27, 4734-4743.	2.7	22
238	Generalized compensated bilayer structure from the transformation optics perspective. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B39.	0.9	4
239	Fast light in silicon ring resonator with resonance-splitting. Optics Express, 2009, 17, 933.	1.7	55
240	Endface reflectivities of optical nanowires. Optics Express, 2009, 17, 10881.	1.7	44
241	Modeling bending losses of optical nanofibers or nanowires. Applied Optics, 2009, 48, 4365.	2.1	44
242	Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators. Applied Optics, 2009, 48, F90.	2.1	37
243	A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator. IEEE Photonics Technology Letters, 2009, 21, 60-62.	1.3	92
244	Invisibility Cloaking by Coordinate Transformation. Progress in Optics, 2009, , 261-304.	0.4	31
245	Dielectric and plasmon slot waveguides for photonic integration. , 2009, , .		0
246	Demonstration of wavelength multicasting using a silicon mode-split microring resonator., 2009,,.		0
247	High-Q optical filter based on photonic crystal surface-mode microcavity. , 2009, , .		0
248	Direct Coupling of Plasmonic and Photonic Nanowires for Hybrid Nanophotonic Components and Circuits. Nano Letters, 2009, 9, 4515-4519.	4.5	301
249	Signal Processing in Silicon Waveguides. , 2009, , .		0
250	Increasing the delay-bit rate product on silicon chip using star-16QAM signal with high spectral efficiency. , 2009, , .		0
251	Signal processing in silicon waveguides. Proceedings of SPIE, 2009, , .	0.8	0
252	Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems. , 2009, , .		3

#	Article	IF	Citations
253	Silicon-chip-based Frequency Quadrupling for Optical Millimeter-wave Signal Generation., 2009,,.		1
254	Increasing the Delay-Bit Rate Product on Silicon Chip Using Star-16QAM Signal with High Spectral Efficiency. , 2009, , .		0
255	Continuously-tunable slow and fast light using silicon microring add-drop filter with mutual mode coupling. , 2009, , .		2
256	Silicon micro-cavities and their system applications. , 2009, , .		0
257	Silicon-chip-based frequency quadrupling for optical millimeter-wave signal generation., 2009,,.		0
258	Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides. Photonics Letters of Poland, 2009, $1,\ldots$	0.2	1
259	Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 706-712.	1.9	50
260	Manipulate light polarizations by metamaterials: From microwave to optics. , 2008, , .		1
261	System Performances of On-Chip Silicon Microring Delay Line for RZ, CSRZ, RZ-DB and RZ-AMI Signals. Journal of Lightwave Technology, 2008, 26, 3744-3751.	2.7	13
262	Influence of geometrical perturbation at inner boundaries of invisibility cloaks. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 968.	0.8	9
263	Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Optics Express, 2008, 16, 4621.	1.7	105
264	Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton. Optics Express, 2008, 16, 7499.	1.7	11
265	Modeling endface output patterns of optical micro/nanofibers. Optics Express, 2008, 16, 8887.	1.7	31
266	Compact optical temporal differentiator based on silicon microring resonator. Optics Express, 2008, 16, 15880.	1.7	176
267	Silicon Photonic Crystal Surface Mode Microcavities. , 2008, , .		0
268	Label-free Biosensor Based on Silicon-On-Insulator Concentric Micro-Ring Resonators. , 2008, , .		6
269	Optically tuneable microwave-photonic phase shifter based on silicon microring resonator., 2008,,.		2
270	The effect of transformation order on the invisibility performance of a practical cylindrical cloak. Journal of Optics, 2008, 10, 095001.	1.5	16

#	Article	IF	Citations
271	Coordinate transformations make perfect invisibility cloaks with arbitrary shape. New Journal of Physics, 2008, 10, 043040.	1.2	84
272	Micro-ring resonators fabricated by focused-ion-beam on SOI. , 2008, , .		0
273	Concentric silicon micro-ring resonators with enhanced transmission notch depth. Proceedings of SPIE, 2008, , .	0.8	1
274	High directive antenna based on metamaterial slab with zero permittivity. Proceedings of SPIE, 2008, , .	0.8	0
275	Optical signal processing in silicon nano-waveguides. , 2008, , .		1
276	Direct characterization of focusing light by negative refraction in a photonic crystal flat lens. Applied Physics Letters, 2008, 93, 191114.	1.5	6
277	Cylindrical superlens by a coordinate transformation. Physical Review B, 2008, 78, .	1.1	121
278	Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering. Applied Physics Letters, 2008, 93, 021909.	1.5	33
279	Dense wavelength conversion and multicasting in a resonance-split silicon microring. Applied Physics Letters, 2008, 93, .	1.5	47
280	Slow Light and Signal Processing in Silicon Nano-waveguides. , 2008, , .		1
281	Wavelength conversion in a silicon mode-split micro-ring resonator with 1G data rate. , 2008, , .		3
282	Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. , 2008, , .		3
283	Transformation optics and invisibility cloaks. , 2008, , .		0
284	Pulse delay and advancement in ring resonator with mutual modes coupling., 2008,,.		0
285	Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator., 2008,,.		5
286	160-Gb/s NRZ-to-PSK conversion using linear filtering in silicon ring resonators. , 2008, , .		0
287	Modelling electromagnetically induced transparency media using the finite-difference time-domain method. New Journal of Physics, 2007, 9, 48-48.	1.2	4
288	Theoretical study of the transmission properties of a metallic film with surface corrugations. Journal of Optics, 2007, 9, 348-351.	1.5	8

#	Article	IF	Citations
289	System performance of slow-light buffering and storage in silicon nano-waveguide., 2007, 6783, 695.		63
290	Finite element study of metal-corner plasmon polariton waveguides. Proceedings of SPIE, 2007, , .	0.8	0
291	Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure. Applied Physics Letters, 2007, 90, 041108.	1.5	28
292	Experimental demonstration of 2D photonic crystal surface cavity in amorphous silicon on silica structure. , 2007, , .		1
293	Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface. Applied Physics Letters, 2007, 90, 201906.	1.5	61
294	Photonic crystal and plasmonic devices for photonic integration., 2007,,.		0
295	Control of slow light in coupled resonator optical waveguide structures with highly dispersive media., 2007,,.		0
296	Effect of photonic bandgap on luminescence from silicon nanocrystals. Optics Letters, 2007, 32, 1878.	1.7	9
297	Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1225.	0.9	15
298	Guided plasmon polariton at 2D metal corners. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2333.	0.9	81
299	Coupled resonator optical waveguide structures with highly dispersive media. Optics Express, 2007, 15, 10362.	1.7	4
300	All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators. Optics Express, 2007, 15, 14275.	1.7	33
301	Scattering characteristics of simplified cylindrical invisibility cloaks. Optics Express, 2007, 15, 17772.	1.7	81
302	Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible. Physical Review Letters, 2007, 99, 233901.	2.9	143
303	Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations. Physical Review Letters, 2007, 99, 113903.	2.9	335
304	Analysis of Surface Plasmon Polariton Using Anisotropic Finite Elements. IEEE Photonics Technology Letters, 2007, 19, 1804-1806.	1.3	9
305	Subwavelength-Diameter Silica Wire and Photonic Crystal Waveguide Slow Light Coupling. Active and Passive Electronic Components, 2007, 2007, 1-5.	0.3	1
306	Compact Optical Waveguides Based on Hybrid Index and Surface-Plasmon-Polariton Guidance Mechanisms. Active and Passive Electronic Components, 2007, 2007, 1-7.	0.3	2

#	Article	IF	CITATIONS
307	Metamaterials, Plasmonics, and THz Frequency Photonic Components. Active and Passive Electronic Components, 2007, 2007, 1-2.	0.3	2
308	Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer. Journal of the European Optical Society-Rapid Publications, 2007, 2, .	0.9	11
309	Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances. Physical Review Letters, 2006, 96, 233901.	2.9	344
310	Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 104.	0.9	77
311	Resonator channel drop filters in a plasmon-polaritons metal. Optics Express, 2006, 14, 2932.	1.7	161
312	Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces. Optics Express, 2006, 14, 6172.	1.7	7
313	Coupled resonator optical waveguide structures with highly dispersive media., 2006,,.		0
314	Channel drop filters realized in a surface plasmon-polaritons metal. , 2006, , .		0
315	Negative refraction and sub-wavelength imaging through surface waves on periodically structured metal surface. , 2006, , .		0
316	Parallel Power Computation for Photonic Crystal Devices. Methods and Applications of Analysis, 2006, 13, 149-156.	0.1	0
317	Role of localized waveguide resonances in the enhanced transmission through periodic arrays of subwavelength holes. , 2006, , .		1
318	Some emerging photonic technologies and their device impact: photonic crystals, plasmonics, and electromagnetically induced transparency (Invited Paper). , 2005, , .		2
319	Optical microcavity based on zero-group-velocity surface modes in photonic crystals. , 2005, , .		0
320	Study of transmission properties for waveguide bends by use of a circular photonic crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 474-479.	0.9	34
321	High-Q microcavities realized in a circular photonic crystal slab. Photonics and Nanostructures - Fundamentals and Applications, 2005, 3, 134-138.	1.0	14
322	Coupled mode analysis of in-plane channel drop filters with resonant mirrors. Photonics and Nanostructures - Fundamentals and Applications, 2005, 3, 84-89.	1.0	5
323	Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately. Microwave and Optical Technology Letters, 2005, 45, 381-385.	0.9	17
324	Doppler effects in a left-handed material: A first-principles theoretical study. Microwave and Optical Technology Letters, 2005, 47, 76-79.	0.9	2

#	Article	IF	CITATIONS
325	Gap maps for triangular photonic crystals with a dispersive and absorbing component. Physical Review B, 2005, 72, .	1.1	10
326	High-Q microcavities in 2D photonic crystal slabs studied by FDTD techniques and Pade approximation. , 2005, 5733, 366.		0
327	Coupling between plane waves and Bloch waves in photonic crystals with negative refraction. Physical Review B, 2005, 71, .	1.1	49
328	Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs. Optics Express, 2005, 13, 2596.	1.7	90
329	Photonic band structures for surface waves on structured metal surfaces. Optics Express, 2005, 13, 7583.	1.7	52
330	Vertically coupled photonic crystal optical filters. Optics Letters, 2005, 30, 1476.	1.7	15
331	Influence of structural variations on high-Q microcavities in two-dimensional photonic crystal slabs. Optics Letters, 2005, 30, 1713.	1.7	6
332	Surface-mode microcavity. Applied Physics Letters, 2005, 87, 111102.	1.5	24
333	Optical add/drop filters using two-dimensional photonic crystals. , 2004, 5279, 286.		4
334	Low-loss photonic crystal and monolithic InP integration: bands, bends, lasers, and filters. , 2004, 5360, 119.		4
335	Photonic Crystals—A Step towards Integrated Circuits for Photonics. ChemPhysChem, 2004, 5, 1268-1283.	1.0	72
336	Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction. Applied Physics Letters, 2004, 85, 4269.	1.5	98
337	Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Optics Express, 2004, 12, 3988.	1.7	183
338	Progress in Opto-Electronic Devices., 2004,,.		1
339	High-aspect-ratio etching and characterization of 2D photonic crystals in InP/InGaAsP/InP heterostructures., 2004,,.		1
340	Wave propagation through a photonic crystal in a negative phase refractive-index region. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 106-110.	1.9	37
341	Contra-directional coupling between two-dimensional photonic crystal waveguides. Photonics and Nanostructures - Fundamentals and Applications, 2003, 1, 23-30.	1.0	13
342	Design of a channel drop filter in a two-dimensional triangular photonic crystal. Applied Physics Letters, 2003, 83, 1074-1076.	1.5	167

#	Article	IF	Citations
343	Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 469.	0.9	79
344	Photonic crystal optical filter based on contra-directional waveguide coupling. Applied Physics Letters, 2003, 83, 5121-5123.	1.5	81
345	Band gap effects in asymmetric photonic crystal slabs. Physical Review B, 2002, 66, .	1.1	38
346	Photonic crystal waveguides in InP-based heterostructures. , 2002, , .		3
347	Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Applied Physics Letters, 2002, 81, 1163-1165.	1.5	308
348	Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals. IEEE Journal of Quantum Electronics, 2002, 38, 770-785.	1.0	52
349	Optical study of two-dimensional InP-based photonic crystals by internal light source technique. IEEE Journal of Quantum Electronics, 2002, 38, 786-799.	1.0	68
350	Time-domain 2D modeling of slab-waveguide based photonic-crystal devices in the presence of radiation losses. Microwave and Optical Technology Letters, 2002, 34, 387-393.	0.9	37
351	FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 278, 348-354.	0.9	34
352	Interference of signals in parallel waveguides in a two-dimensional photonic crystal. Physica B: Condensed Matter, 2001, 299, 187-193.	1.3	4
353	Explicit formulas for obtaining the radiation characteristics of an antenna based on a three-dimensional metallic photonic bandgap structure. Microwave and Optical Technology Letters, 2001, 29, 376-381.	0.9	1
354	High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover. Microwave and Optical Technology Letters, 2001, 30, 41-44.	0.9	62
355	Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave and Optical Technology Letters, 2001, 30, 327-330.	0.9	89
356	Surface modes in two-dimensional dielectric and metallic photonic band gap structures: a FDTD study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 85-91.	0.9	22
357	An explicit method for the analysis of guided waves in a line-defect channel in a photonic crystal. Microwave and Optical Technology Letters, 2000, 25, 236-240.	0.9	4
358	The influence of the dielectric-air interface on the radiation pattern of an antenna in a metallic photonic bandgap structure in a dielectric host medium. Microwave and Optical Technology Letters, 2000, 26, 367-371.	0.9	5
359	Guided modes in a two-dimensional metallic photonic crystal waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 425-429.	0.9	44
360	An averaged-field approach for obtaining the band structure of a dielectric photonic crystal. Journal of Physics Condensed Matter, 2000, 12, 99-112.	0.7	2

#	Article	IF	CITATIONS
361	Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions. Physical Review B, 2000, 61, 12871-12876.	1.1	106
362	Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 1027.	0.9	64
363	A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. Journal of Applied Physics, 2000, 87, 8268-8275.	1.1	108
364	Large complete band gap in two-dimensional photonic crystals with elliptic air holes. Physical Review B, 1999, 60, 10610-10612.	1.1	91
365	Reconstruction of small Si cluster after ethylene adsorption: A full-potential linear-muffin-tin-orbital molecular-dynamics study. Journal of Chemical Physics, 1999, 110, 10738-10745.	1.2	13
366	A full-potential linear-muffin-tin-orbital molecular-dynamics study of the fourteen stable structures for cluster Si9. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 256, 386-390.	0.9	30
367	Ammonia adsorption and saturation on small Si cluster surfaces: a full-potential linear-muffin-tin-orbital molecular-dynamics study. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 245, 430-434.	0.9	17
368	A theoretical study of surfactant action in the layer-by-layer homoepitaxial growth of metals: the case of In on Cu(111). Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239, 127-133.	0.9	11
369	The adsorption and dissociation of ammonia on small Si clusters surface. Surface Science, 1998, 395, 260-267.	0.8	20
370	A theoretical study of adsorption and the surfactant effect of Sb on the Ag(100) surface. Journal of Physics Condensed Matter, 1998, 10, $8653-8659$.	0.7	5
371	A full-potential linear-muffin-tin-orbital study of water adsorption on and saturation in small Si clusters. Journal of Physics Condensed Matter, 1998, 10, 7743-7750.	0.7	8
372	The adsorption and dissociation of ammonia on the cluster surface. Journal of Physics Condensed Matter, 1997, 9, 6543-6553.	0.7	12
373	Relation between chemical surface diffusion coefficient and order of the adsorbate layer. Surface Science, 1997, 374, 350-356.	0.8	1
374	A study of chemical diffusion on a stepped surface by the transition-type-dependent Monte Carlo method. Journal of Physics Condensed Matter, 1996, 8, 4867-4879.	0.7	2
375	Chemical surface diffusion coefficient and orderedc(2 2) adsorbate layer. Journal of Physics Condensed Matter, 1996, 8, 1335-1343.	0.7	O
376	A channel drop filter in a two-dimensional triangular photonic crystal. , 0, , .		0
377	Optical add/drop filter by contra-directional coupling between photonic crystal waveguides. , 0, , .		0
378	Fabrication tolerance tests on high-Q microcavities in 2D photonic crystal slabs. , 0, , .		0

#	Article	lF	CITATIONS
379	Nonlinear Perceptual Color Space Coded by Additive Digital Pulses. Optica, 0, , .	4.8	3
380	Ultrathin High Qualityâ€Factor Planar Absorbers/Emitters Based on Uniaxial/Biaxial Anisotropic van der Waals Polar Crystals. Advanced Optical Materials, 0, , 2100645.	3.6	6