Hyun Deog Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90219/publications.pdf

Version: 2024-02-01

32 papers 3,264 citations

471509 17 h-index 31 g-index

33 all docs 33 docs citations

33 times ranked 4441 citing authors

#	Article	IF	CITATIONS
1	Hanging meniscus configuration for characterizing oxygen-reduction electrocatalysts in highly concentrated electrolytes. Journal of Electroanalytical Chemistry, 2022, 913, 116288.	3.8	1
2	Cobalt doping stabilizes the expanded structure of layered double hydroxide cathodes for application in fast charging Ni–Zn batteries. Journal of Applied Electrochemistry, 2022, 52, 1449-1458.	2.9	1
3	A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability. Organic Electronics, 2021, 88, 105987.	2.6	5
4	Control of crystal size tailors the electrochemical performance of α-V ₂ O ₅ as a Mg ²⁺ intercalation host. Nanoscale, 2021, 13, 10081-10091.	5.6	7
5	Modeling ionic intercalation and solid-state diffusion using typical descriptors of batteries. Journal of Applied Electrochemistry, 2021, 51, 703-713.	2.9	3
6	Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries. Korean Journal of Chemical Engineering, 2021, 38, 1059-1065.	2.7	8
7	Electrochemical Generation of Mesopores and Residual Oxygen for the Enhanced Activity of Silver Electrocatalysts. Journal of Physical Chemistry Letters, 2021, 12, 5748-5757.	4.6	5
8	Potential-Dependent Passivation of Zinc Metal in a Sulfate-Based Aqueous Electrolyte. Langmuir, 2021, 37, 13218-13224.	3.5	5
9	Does Water Enhance Mg Intercalation in Oxides? The Case of a Tunnel Framework. ACS Energy Letters, 2020, 5, 3357-3361.	17.4	13
10	Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V ₄ Nb ₁₈ O ₅₅ . Inorganic Chemistry, 2020, 59, 9783-9797.	4.0	7
11	Factors Defining the Intercalation Electrochemistry of CaFe ₂ O ₄ -Type Manganese Oxides. Chemistry of Materials, 2020, 32, 8203-8215.	6.7	6
12	A Chronocoulometric Method to Measure the Corrosion Rate on Zinc Metal Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42612-42621.	8.0	22
13	Enhanced charge storage of nanometric ζ-V ₂ O ₅ in Mg electrolytes. Nanoscale, 2020, 12, 22150-22160.	5.6	15
14	Intercalation of Mg into a Few-Layer Phyllomanganate in Nonaqueous Electrolytes at Room Temperature. Chemistry of Materials, 2020, 32, 6014-6025.	6.7	3
15	Tailoring the electrochemical activity of magnesium chromium oxide towards Mg batteries through control of size and crystal structure. Nanoscale, 2019, 11, 639-646.	5.6	27
16	Intercalation of Magnesium into a Layered Vanadium Oxide with High Capacity. ACS Energy Letters, 2019, 4, 1528-1534.	17.4	75
17	Multivalent Electrochemistry of Spinel Mg _{<i>x</i>} O ₄ Nanocrystals. Chemistry of Materials, 2018, 30, 1496-1504.	6.7	23
18	Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5. CheM, 2018, 4, 564-585.	11.7	126

#	Article	lF	CITATIONS
19	Electrochemical Reduction of a Spinel-Type Manganese Oxide Cathode in Aqueous Electrolytes with Ca ²⁺ or Zn ²⁺ . Journal of Physical Chemistry C, 2018, 122, 4182-4188.	3.1	33
20	Mechanism of Zn Insertion into Nanostructured Î-MnO ₂ : A Nonaqueous Rechargeable Zn Metal Battery. Chemistry of Materials, 2017, 29, 4874-4884.	6.7	225
21	Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF ₃ SO ₂) ₂ N [–] at High Current Densities. Langmuir, 2017, 33, 9398-9406.	3.5	70
22	"Rocking-Chair―Type Metal Hybrid Supercapacitors. ACS Applied Materials & 2016, 8, 30853-30862.	8.0	86
23	Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage. ChemNanoMat, 2016, 2, 688-691.	2.8	38
24	Low Dose Electron Microscopy of Interlayer Expanded Molybdenum Disulfide Nanocomposites. Microscopy and Microanalysis, 2015, 21, 1057-1058.	0.4	0
25	Effects of Interlayer Distance and van der Waals Energy on Electrochemical Activation of Partially Reduced Graphite Oxide. Electrochimica Acta, 2015, 173, 827-833.	5.2	12
26	Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy, 2015, 18, 265-272.	16.0	170
27	On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today, 2014, 17, 110-121.	14.2	501
28	A Magnesium-Activated Carbon Hybrid Capacitor. Journal of the Electrochemical Society, 2014, 161, A410-A415.	2.9	59
29	Potential Sweep Method to Evaluate Rate Capability in Capacitive Deionization. Electrochimica Acta, 2014, 139, 374-380.	5.2	20
30	Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. Journal of Power Sources, 2014, 267, 411-420.	7.8	164
31	Electrochemical and Spectroscopic Analysis of Mg ²⁺ Intercalation into Thin Film Electrodes of Layered Oxides: V ₂ O ₅ and MoO ₃ . Langmuir, 2013, 29, 10964-10972.	3.5	346
32	Mg rechargeable batteries: an on-going challenge. Energy and Environmental Science, 2013, 6, 2265.	30.8	1,188