Karl J Staples

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9021773/publications.pdf Version: 2024-02-01

KADI I STADIES

#	Article	IF	CITATIONS
1	Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nature Medicine, 2012, 18, 274-280.	15.2	882
2	Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73, 422-430.	2.7	201
3	Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms. Journal of Allergy and Clinical Immunology, 2015, 136, 323-333.	1.5	178
4	A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax, 2017, 72, 919-927.	2.7	152
5	Phenotypic characterization of lung macrophages in asthmatic patients: Overexpression of CCL17. Journal of Allergy and Clinical Immunology, 2012, 130, 1404-1412.e7.	1.5	110
6	Dysregulation of Antiviral Function of CD8 ⁺ T Cells in the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1–PD-L1 Axis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 642-651.	2.5	106
7	Chemokine Receptor 4 Plays a Key Role in T Cell Recruitment into the Airways of Asthmatic Patients. Journal of Immunology, 2010, 184, 4568-4574.	0.4	93
8	Steroid-induced Deficiency of Mucosal-associated Invariant T Cells in the Chronic Obstructive Pulmonary Disease Lung. Implications for Nontypeable <i>Haemophilus influenzae</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1208-1218.	2.5	93
9	Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax, 2016, 71, 126-132.	2.7	82
10	Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 261-270.	1.4	82
11	Unfractionated heparin inhibits live wild type SARSâ€CoVâ€2 cell infectivity at therapeutically relevant concentrations. British Journal of Pharmacology, 2021, 178, 626-635.	2.7	73
12	Inflammatory phenotyping predicts clinical outcome in COVID-19. Respiratory Research, 2020, 21, 245.	1.4	72
13	Impact and associations of eosinophilic inflammation in COPD: analysis of the AERIS cohort. European Respiratory Journal, 2017, 50, 1700853.	3.1	68
14	Seasonality, risk factors and burden of community-acquired pneumonia in COPD patients: a population database study using linked health care records. International Journal of COPD, 2017, Volume 12, 313-322.	0.9	64
15	Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Frontiers in Immunology, 2018, 9, 1671.	2.2	54
16	Dynamics of IFN-β Responses during Respiratory Viral Infection. Insights for Therapeutic Strategies. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 83-94.	2.5	50
17	IL-12 and IL-7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to bacterial infection. Journal of Allergy and Clinical Immunology, 2018, 141, 2182-2195.e6.	1.5	49
18	Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNÎ ² . PLoS ONE, 2015, 10, e0121527.	1,1	42

#	Article	IF	CITATIONS
19	Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1α mRNA. Immunobiology, 2011, 216, 832-839.	0.8	41
20	A Novel Lung Explant Model for the Ex Vivo Study of Efficacy and Mechanisms of Anti-Influenza Drugs. Journal of Immunology, 2015, 194, 6144-6154.	0.4	41
21	Multidimensional endotypes of asthma: topological data analysis of cross-sectional clinical, pathological, and immunological data. Lancet, The, 2015, 385, S42.	6.3	38
22	Stimulus-Specific Inhibition of IL-5 by cAMP-Elevating Agents and IL-10 Reveals Differential Mechanisms of Action. Biochemical and Biophysical Research Communications, 2000, 273, 811-815.	1.0	37
23	Using Novel Computed Tomography Analysis to Describe the Contribution and Distribution of Emphysema and Small Airways Disease in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2019, 16, 990-997.	1.5	34
24	Human Lung Conventional Dendritic Cells Orchestrate Lymphoid Neogenesis during Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 535-548.	2.5	34
25	Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection. PLoS ONE, 2016, 11, e0157887.	1.1	31
26	Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) Infection and Airway Inflammation in COPD. PLoS ONE, 2016, 11, e0167250.	1.1	30
27	Distinct emphysema subtypes defined by quantitative CT analysis are associated with specific pulmonary matrix metalloproteinases. Respiratory Research, 2016, 17, 92.	1.4	29
28	Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Frontiers in Immunology, 2021, 12, 653969.	2.2	27
29	The Role of Non-Typeable Haemophilus influenzae Biofilms in Chronic Obstructive Pulmonary Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 720742.	1.8	26
30	Novel expression of a functional trimeric fragment of human SP-A with efficacy in neutralisation of RSV. Immunobiology, 2017, 222, 111-118.	0.8	25
31	Relationship of CT-quantified emphysema, small airways disease and bronchial wall dimensions with physiological, inflammatory and infective measures in COPD. Respiratory Research, 2018, 19, 31.	1.4	25
32	Impact of radiologically stratified exacerbations: insights into pneumonia aetiology in COPD. Respiratory Research, 2018, 19, 143.	1.4	25
33	Interrelationships Among Small Airways Dysfunction, Neutrophilic Inflammation, and Exacerbation Frequency in COPD. Chest, 2021, 159, 1391-1399.	0.4	25
34	RIPOSTE: a framework for improving the design and analysis of laboratory-based research. ELife, 2015, 4, .	2.8	24
35	Dysregulation of COVID-19 related gene expression in the COPD lung. Respiratory Research, 2021, 22, 164.	1.4	22
36	Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells. Journal of Immunology, 2017, 198, 110-118.	0.4	21

#	Article	IF	CITATIONS
37	IFN-Î ³ Influences Epithelial Antiviral Responses via Histone Methylation of the RIG-I Promoter. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 428-438.	1.4	17
38	Drivers of year-to-year variation in exacerbation frequency of COPD: analysis of the AERIS cohort. ERJ Open Research, 2019, 5, 00248-2018.	1.1	16
39	Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36. PLoS ONE, 2016, 11, e0163889.	1.1	15
40	Patient perceived barriers to exercise and their clinical associations in difficult asthma. Asthma Research and Practice, 2020, 6, 5.	1.2	13
41	Defining a role for exercise training in the management of asthma. European Respiratory Review, 2020, 29, 190106.	3.0	12
42	Immunopeptidomic analysis of influenza A virus infected human tissues identifies internal proteins as a rich source of HLA ligands. PLoS Pathogens, 2022, 18, e1009894.	2.1	11
43	<scp>Nontypeable <i>HaemophilusÂinfluenzae</i></scp> infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2961-2973.	2.7	11
44	Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages. PLoS ONE, 2015, 10, e0125799.	1.1	10
45	Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. Frontiers in Allergy, 2021, 2, 738987.	1.2	8
46	Dual RNASeq Reveals NTHi-Macrophage Transcriptomic Changes During Intracellular Persistence. Frontiers in Cellular and Infection Microbiology, 2021, 11, 723481.	1.8	7
47	Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. European Respiratory Journal, 2022, 60, 2200455.	3.1	6
48	Reply: The PD-1–PD-L1 Axis in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 644-645.	2.5	5
49	Exercise Training Induces a Shift in Extracellular Redox Status with Alterations in the Pulmonary and Systemic Redox Landscape in Asthma. Antioxidants, 2021, 10, 1926.	2.2	5
50	The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD. Frontiers in Immunology, 2021, 12, 754004.	2.2	5
51	Development of flow cytometric opsonophagocytosis and antibody-mediated complement deposition assays for non-typeable Haemophilus influenzae. BMC Microbiology, 2018, 18, 167.	1.3	3
52	Role of exosomal microRNA in driving skeletal muscle wasting in COPD. , 2015, , .		3
53	Late Breaking Abstract - Differentially expressed exosomal miRNAs target key inflammatory pathways in COPD , 2018, , .		3
54	Using DPM CT analysis to assess the contribution of small airways disease in COPD. , 2018, , .		2

#	Article	IF	CITATIONS
55	Interval Exercise Training in Poorly Controlled Asthma: Preliminary Clinical Trial Results. , 2019, , .		2
56	Impact of bacterial strain acquisition in the lung of patients with COPD: the AERIS study. Infectious Diseases, 2022, 54, 784-793.	1.4	2
57	Editorial: Therapeutics for acute lung injury: time to call in the DRs?. Journal of Leukocyte Biology, 2017, 101, 351-353.	1.5	1
58	The use of bronchoalveolar lavage (BAL) to assess lower airways inflammation in asthma. , 2016, , .		1
59	Comparison of small airways disease measures between frequent and infrequent COPD exacerbators. , 2019, , .		1
60	Lung exosomal miRNAs discriminate between healthy ex-smokers and COPD. , 2019, , .		1
61	Distinguishing features of pneumonia and exacerbations in COPD. , 2015, , .		1
62	Macrophage inflammatory responses to Non-typeable Haemophilus influenzae (NTHi) are strain-dependent. , 2019, , .		1
63	Fewer and smaller airways in COPD subjects measured by CT imaging. , 2019, , .		1
64	Dual RNASeq unveils NTHi-macrophage transcriptomic changes during intracellular persistence. , 2020, , .		1
65	Comparison of two published definitions of sputum neutrophilia show clinical measures of disease are more severe in neutrophilic asthma (NA) than non-neutrophilic asthma (NNA) using >40% sputum neutrophils as the definition of disease. , 2020, , .		1
66	P120 Comparison of cellular inflammation and TLR expression profiles between healthy and COPD subjects. Thorax, 2011, 66, A116-A116.	2.7	0
67	Lung macrophages: old hands required rather than new blood?. Thorax, 2016, 71, 973-974.	2.7	0
68	Macrophages and neutrophils: dynamic duo or partners in crime?. Thorax, 2018, 73, 504-506.	2.7	0
69	Making a bad relationship good. Nature Microbiology, 2019, 4, 1251-1252.	5.9	0
70	Acquired immune responses to the seasonal trivalent influenza vaccination in COPD. Clinical and Experimental Immunology, 2019, 198, 71-82.	1,1	0
71	Sputum processing by mechanical dissociation: A rapid alternative to traditional sputum assessment approaches. Clinical Respiratory Journal, 2021, 15, 800-807.	0.6	0
72	Increased total, secretory and NTHi-specific IgA in the COPD airway. , 2015, , .		0

#	Article	IF	CITATIONS
73	LSC Abstract – Monocyte-derived macrophages upregulate surface MR1 in response to NTHi. , 2015, , .		Ο
74	Viral infection of macrophages reduces CD36 expression: Implications for phagocytosis of non-typeable <i>haemophilus influenzae</i> ., 2015, , .		0
75	IFNγ influences bronchial epithelial anti-viral immune responses via inducible epigenetic control of histone methylation of the RIG-I promoter. , 2015, , .		Ο
76	Evidence for cell mediated immune dysfunction in the COPD lung: The role of cytotoxic CD4+ T cells. , 2015, , .		0
77	LATE-BREAKING ABSTRACT: Eosinophilic inflammation in COPD: During clinical stability and exacerbations. The AERIS study. , 2015, , .		Ο
78	LATE-BREAKING ABSTRACT: Does sputum colour hold the answer? The AERIS study. , 2015, , .		0
79	Correlation of inflammatory markers of disease with sputum neutrophilia in severe asthma. , 2015, , .		Ο
80	Decreased regulation of lung CD8+ T cells by virally-infected macrophages in COPD: Role of PD1/PDL1 axis. , 2015, , .		0
81	Fluticasone propionate reduces influenza infection of human macrophages. , 2015, , .		Ο
82	Cytotoxic responses of mucosal-associated Invariant T cells to NTHi infection. , 2016, , .		0
83	LSC - 2017 - Tissue-resident Natural Killer (NK) cell Phenotype in the Human Lung. , 2017, , .		Ο
84	Relationship of quantititve CT with clinical and biological measures in COPD. , 2017, , .		0
85	Desaturation on exertion is associated with emphysema severity on CT. , 2017, , .		0
86	The response of macrophages to Moraxella catarrhalis infection. , 2017, , .		0
87	Effect of corticosteroids on innate and adaptive T cell responses to non-typeable Haemophilus influenzae. , 2017, , .		0
88	Manning the Barricades: Lung Fibroblasts and CD4+ T Cells as the Last Line of Defense against Bacterial Invasion?. Critical Reviews in Immunology, 2018, 38, 367-378.	1.0	0
89	Dyspnoea perception and FEV1 decline during Sputum Induction in Healthy Controls and COPD patients. , 2018, , .		0
90	Trivalent Influenza Vaccine Responses in COPD. , 2018, , .		0

6

#	Article	IF	CITATIONS
91	Dynamics of IFN- \hat{l}^2 responses during respiratory viral infection: insights for therapeutic strategies. , 2019, , .		0
92	Strain-dependent effects of Nontypeable Haemophilus influenzae (NTHi) on human macrophage function. , 2019, , .		0
93	Concordance in temporally distinct blood and sputum inflammatory phenotypic measures in severe asthma. , 2019, , .		0
94	Human lung CD1c dendritic cells orchestrate lymphoid neogenesis during COPD. , 2019, , .		0
95	Dynamics of IFN-ß responses during respiratory viral infection: insights for therapeutic strategies. , 2019, , .		0
96	Point-of-Care Inflammatory Phenotyping Predicts Clinical Outcome in COVID-19. SSRN Electronic Journal, 0, , .	0.4	0
97	Exercise moderates inflammation in asthma through increased redox buffering capacity. , 2020, , .		0
98	Barriers to Exercise in Difficult Asthma in the WATCH Cohort. , 2020, , .		0