David R Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9021728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Propranolol Sensitizes Vascular Sarcoma Cells to Doxorubicin by Altering Lysosomal Drug Sequestration and Drug Efflux. Frontiers in Oncology, 2020, 10, 614288.	1.3	14
2	Importance of the RpoE Regulon in Maintaining the Lipid Bilayer during Antimicrobial Treatment with the Polycationic Agent, Chlorhexidine. Proteomics, 2018, 18, 1700285.	1.3	10
3	Symposium review: Microbial endocrinology—Why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health. Journal of Dairy Science, 2018, 101, 5619-5628.	1.4	24
4	Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: Implications for interkingdom communication within the microbiota-gut-brain axis. PLoS ONE, 2018, 13, e0191037.	1.1	37
5	Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?. Advances in Experimental Medicine and Biology, 2016, 874, 121-141.	0.8	14
6	Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa. Advances in Experimental Medicine and Biology, 2016, 874, 79-99.	0.8	6
7	Morphine Attenuates Apically-Directed Cytokine Secretion from Intestinal Epithelial Cells in Response to Enteric Pathogens. Pathogens, 2014, 3, 249-257.	1.2	8
8	Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells. Journal of Neuroimmunology, 2013, 259, 8-16.	1.1	11
9	Piperidine alkaloids: Human and food animal teratogens. Food and Chemical Toxicology, 2012, 50, 2049-2055.	1.8	59
10	Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Veterinary Microbiology, 2012, 156, 229-237.	0.8	138
11	Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell and Tissue Research, 2011, 343, 23-32.	1.5	223
12	Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?. , 2010, , 89-109.		1
13	Catecholamines and sympathomimetic drugs decrease earlySalmonellaTyphimurium uptake into porcine Peyer's patches. FEMS Immunology and Medical Microbiology, 2008, 52, 29-35.	2.7	27
14	Comparison of growth phase on Salmonella enterica serovar Typhimurium invasion in an epithelial cell line (IPEC J2) and mucosal explants from porcine small intestine. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 63-69.	0.7	27
15	The Ussing Chamber and Measurement of Drug Actions on Mucosal Ion Transport. Current Protocols in Pharmacology, 2008, 41, Unit 7.12.	4.0	5
16	Characterization of Salmonella enterica serovar Typhimurium DT104 invasion in an epithelial cell line (IPEC J2) from porcine small intestine. Veterinary Microbiology, 2007, 120, 328-333.	0.8	25
17	Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. Journal of Neuroimmunology, 2007, 185, 20-28.	1.1	39
18	Anatomical evidence for enteric neuroimmune interactions in Peyer's patches. Journal of Neuroimmunology, 2007, 185, 64-74.	1.1	55

#	Article	IF	CITATIONS
19	Evidence for Neuromodulation of Enteropathogen Invasion in the Intestinal Mucosa. Journal of NeuroImmune Pharmacology, 2007, 2, 329-337.	2.1	13
20	Salmonella enterica serovar Choleraesuis infection of the porcine jejunal Peyer's patch rapidly induces IL-1β and IL-8 expression. Veterinary Immunology and Immunopathology, 2006, 109, 1-11.	0.5	31
21	Differential effects of clathrin and actin inhibitors on internalization of Escherichia coli and Salmonella choleraesuis in porcine jejunal Peyer's patches. Veterinary Microbiology, 2006, 113, 117-122.	0.8	23
22	Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. European Journal of Pharmacology, 2006, 539, 116-124.	1.7	50
23	Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. European Journal of Pharmacology, 2005, 519, 285-289.	1.7	6
24	Adrenocorticotrophic hormone modulatesEscherichia coliO157:H7 adherence to porcine colonic mucosa. Stress, 2005, 8, 185-190.	0.8	28
25	Characterization of Specific Opioid Binding Sites in Neural Membranes from the Myenteric Plexus of Porcine Small Intestine. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 385-393.	1.3	10
26	Adrenergic modulation ofEscherichia coliO157:H7 adherence to the colonic mucosa. American Journal of Physiology - Renal Physiology, 2004, 287, G1238-G1246.	1.6	73
27	Characterization of specific δ-opioid binding sites in the distal small intestine of swine. European Journal of Pharmacology, 2003, 482, 111-116.	1.7	2
28	Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum. Journal of Neuroimmunology, 2003, 141, 74-82.	1.1	89
29	Pharmacological characterization of a 7-benzylidenenaltrexone-preferring opioid receptor in porcine ileal submucosa. British Journal of Pharmacology, 2003, 140, 691-700.	2.7	3
30	Kinin-Induced Anion-Dependent Secretion in Porcine lleum: Characterization and Involvement of Opioid- and Cannabinoid-Sensitive Enteric Neural Circuits. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 733-739.	1.3	15
31	Catecholamines Modulate Escherichia coli O157:H7 Adherence to Murine Cecal Mucosa. Shock, 2003, 20, 183-188.	1.0	99
32	Delta Opioid Receptors in the Gastrointestinal Tract. , 2003, , .		0
33	Predominance of δ-Opioid-Binding Sites in the Porcine Enteric Nervous System. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 900-909.	1.3	13
34	Pharmaconeuroimmunology in the Intestinal Tract: Opioid and Cannabinoid Receptors, Enteric Neurons and Mucosal Defense. Advances in Experimental Medicine and Biology, 2002, 493, 197-205.	0.8	1
35	Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology, 2002, 123, 227-234.	0.6	167
36	Active bicarbonate-dependent secretion evoked by 5-hydroxytryptamine in porcine ileal mucosa is mediated by opioid-sensitive enteric neurons. European Journal of Pharmacology, 2002, 451, 185-190.	1.7	9

#	Article	IF	CITATIONS
37	Chemical coding of neurons expressing δ- and κ-opioid receptor and type I vanilloid receptor immunoreactivities in the porcine ileum. Cell and Tissue Research, 2002, 307, 23-33.	1.5	66
38	Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. British Journal of Pharmacology, 2002, 135, 1598-1606.	2.7	73
39	Cannabinoids throw up a conundrum. British Journal of Pharmacology, 2002, 137, 575-577.	2.7	6
40	Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neuroscience Letters, 2001, 308, 153-156.	1.0	39
41	δ-opioid receptors inhibit neurogenic intestinal secretion evoked by mast cell degranulation and type I hypersensitivity. Journal of Neuroimmunology, 2001, 112, 89-96.	1.1	9
42	Opioid receptors on bone marrow neutrophils modulate chemotaxis and CD11b/CD18 expression. European Journal of Pharmacology, 2001, 414, 289-294.	1.7	17
43	In vitro evaluation of intraluminal factors that may alter intestinal permeability in ponies with carbohydrate-induced laminitis. American Journal of Veterinary Research, 2000, 61, 858-861.	0.3	33
44	Evaluation of substance P as a neurotransmitter in equine jejunum. American Journal of Veterinary Research, 2000, 61, 1178-1184.	0.3	14
45	Localization of CB 1 -cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell and Tissue Research, 2000, 302, 73-80.	1.5	121
46	Orphanin FQ/nociceptin: a novel neuromodulator of gastrointestinal function?. Peptides, 2000, 21, 999-1005.	1.2	35
47	Expression of nociceptin/OFQ receptor and prepro-nociceptin/OFQ in lymphoid tissues. Peptides, 2000, 21, 1865-1870.	1.2	25
48	Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum. Cell and Tissue Research, 1999, 298, 275-286.	1.5	68
49	Cloning, expression and functional role of a nociceptin/orphanin FQ receptor in the porcine gastrointestinal tract. European Journal of Pharmacology, 1999, 365, 281-289.	1.7	40
50	Potentiation of anaphylaxis in guinea pig ileal mucosa by a selective δ-opioid receptor agonist. European Journal of Pharmacology, 1999, 379, 81-85.	1.7	1
51	Delta-opioid receptor mRNA expression and immunohistochemical localization in porcine ileum. Digestive Diseases and Sciences, 1998, 43, 1402-1410.	1.1	20
52	The porcine mu opioid receptor: molecular cloning and mRNA distribution in lymphoid tissues. Journal of Neuroimmunology, 1998, 90, 192-198.	1.1	21
53	Opioid Receptor Gene Expression in the Porcine Immune System. Advances in Experimental Medicine and Biology, 1998, 437, 59-65.	0.8	10
54	Regulation of Ion Transport in the Porcine Intestinal Tract by Enteric Neurotransmitters and Hormones. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 309-317.	0.7	34

#	Article	IF	CITATIONS
55	Linkage assignment of eleven genes to the porcine genome. Mammalian Genome, 1997, 8, 559-563.	1.0	42
56	Increased delayed type hypersensitivity in rats subjected to unilateral mononeuropathy is mediated by neurokinin-1 receptors. Journal of Neuroimmunology, 1996, 65, 119-124.	1.1	8
57	Presence of immunocytes and sulfidopeptide leukotrienes in the inflamed guinea pig distal colon. Inflammation, 1996, 20, 413-425.	1.7	15
58	Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behavioural Brain Research, 1995, 73, 193-197.	1.2	25
59	Selective hyperresponsiveness to ovalbumin-induced epithelial transport in inflamed guinea pig distal colon. Inflammation, 1993, 17, 687-703.	1.7	3
60	Molecular Cloning and Structural Analysis of Canine Gastric H+, K+-ATPase. Biochemical and Biophysical Research Communications, 1993, 196, 1240-1247.	1.0	15
61	The human gastrin/cholecystokinin type B receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9085-9089.	3.3	104
62	Mapping of the gene encoding the β-subunit of H+,K+-ATPase to human chromosome 13q34 by fluorescence in situ hybridization. Genomics, 1992, 14, 1114-1115.	1.3	6
63	Opiate binding sites in mucosa of pig small intestine. Life Sciences, 1991, 49, PL219-PL222.	2.0	18
64	Modulation of Na+, Clâ^' and HCO3â^' transport by carbachol in pig distal jejunum. European Journal of Pharmacology, 1991, 193, 257-264.	1.7	12
65	Cholinergic neurons and muscarinic receptors regulate anion secretion in pig distal jejunum. European Journal of Pharmacology, 1991, 193, 265-273.	1.7	20
66	Regulation of ion transport in porcine distal colon: Effects of putative neurotransmitters. Gastroenterology, 1991, 100, 703-710.	0.6	29
67	Neurotensin binding sites in porcine jejunum: Biochemical Characterization and intramural Localization. Synapse, 1990, 6, 81-90.	0.6	24
68	Characterization and autoradiographic localization of gastrin releasing peptide receptors in the porcine gut. Peptides, 1990, 11, 779-787.	1.2	14
69	Neurotensin-related peptides inhibit spontaneous longitudinal contractions of porcine distal jejunum. Peptides, 1990, 11, 713-718.	1.2	9
70	Effects of galanin on smooth muscle and mucosa of porcine jejunum. Peptides, 1990, 11, 497-500.	1.2	31
71	Effect of avian neurotensin on motility of chicken (Gallus domesticus) lower gut in vivo and in vitro. Peptides, 1990, 11, 641-645.	1.2	16
72	Canine neurotensin, neurotensin6–13 and neuromedin N: primary structures and receptor activity. Regulatory Peptides, 1990, 28, 11-22.	1.9	15

#	Article	IF	CITATIONS
73	Actions of neuropeptide Y on basal, cyclic AMP-induced and neurally evoked ion transport in porcine distal jejunum. Regulatory Peptides, 1990, 29, 31-47.	1.9	23
74	Angiotensins promote fluid absorption in the rat ileum after their CNS administration. Peptides, 1989, 10, 245-247.	1.2	4
75	Actions of centrally administered neuropeptides on rat intestinal transport: enhancement of ileal absorption by angiotensin II. European Journal of Pharmacology, 1988, 148, 411-418.	1.7	15
76	An analysis of the effects of galanin on gastric acid secretion and plasma levels of gastrin in the dog. European Journal of Pharmacology, 1988, 154, 313-318.	1.7	29
77	Neuromedin U octapeptide alters ion transport in porcine jejunum. European Journal of Pharmacology, 1988, 155, 159-162.	1.7	74
78	IV. Receptor regulation of ion transport in the intestinal epithelium. Life Sciences, 1988, 43, 2193-2201.	2.0	5
79	Actions of gastrin-releasing peptide and related mammalian and amphibian peptides on ion transport in the porcine proximal jejunum. Regulatory Peptides, 1988, 23, 1-14.	1.9	11
80	[D-Ala2, Met5]-Enkephalinamide: CNS-mediated inhibition of prostaglandin-stimulated intestinal fluid and ion transport in the rat. Peptides, 1987, 8, 1029-1033.	1.2	11
81	Pain threshold changes in adjuvant-induced inflammation: A possible model of chronic pain in the mouse. Pharmacology Biochemistry and Behavior, 1986, 24, 49-53.	1.3	75
82	Secretagogue-induced changes in membrane calcium permeability in chicken and chinchilla ileal mucosa. Selective inhibition by loperamide Journal of Clinical Investigation, 1986, 78, 281-287.	3.9	49
83	The use of quaternary narcotic antagonists in opiate research. Neuropharmacology, 1985, 24, 181-191.	2.0	238
84	The use and misuse of quaternary ammonium opiate antagonists. Trends in Pharmacological Sciences, 1985, 6, 394-395.	4.0	6
85	The Pharmacological Modification of Secretory Responses. Novartis Foundation Symposium, 1985, 112, 155-174.	1.2	2
86	Reversal of morphine-induced catalepsy in the rat by narcotic antagonists and their quaternary derivatives. Neuropharmacology, 1983, 22, 317-321.	2.0	52
87	Inhibition of the antisecretory effects of [D-Ala2,D-Leu5]enkephalin in the guinea-pig ileum by a selective l´opioid antagonist. European Journal of Pharmacology, 1983, 94, 159-161.	1.7	15
88	CNS involvement in the antisecretory action of [Met5]enkephalinamide on the rat intestine. European Journal of Pharmacology, 1983, 90, 441-444.	1.7	27
89	NEUROTENSIN. British Medical Bulletin, 1982, 38, 239-246.	2.7	41
90	Effects of opiate antagonists and putative mu- and kappa-agonists on milk intake in rat and squirrel monkey. Pharmacology Biochemistry and Behavior, 1982, 17, 1275-1279.	1.3	72

#	Article	IF	CITATION
91	Suppression of drinking by naloxone in the rat: A further characterization. European Journal of Pharmacology, 1981, 69, 331-340.	1.7	85
92	Opiate antagonists: central sites of action in suppressing water intake of the rat. Brain Research, 1981, 221, 432-436.	1.1	91
93	Narcotic antagonists attenuate drinking induced by water deprivation in a primate. Life Sciences, 1981, 28, 1287-1294.	2.0	36
94	Suppression of drinking by naloxone in rats homo- and heterozygous for diabetes insipidus. Pharmacology Biochemistry and Behavior, 1981, 15, 109-114.	1.3	19
95	Suppression by naloxone of water intake induced by deprevation and hypertonic saline in intact and hypophysectomized rats. Life Sciences, 1980, 26, 1535-1542.	2.0	75
96	Evidence that opiate receptors mediate suppression of hypertonic saline-induced drinking in the mouse by narcotic antagonists. Life Sciences, 1980, 26, 1543-1550.	2.0	76
97	Suppression of deprivation-induced food and water intake in rats and mice by naloxone. Pharmacology Biochemistry and Behavior, 1979, 11, 567-573.	1.3	276