
Sarika Mehra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9021691/publications.pdf Version: 2024-02-01

SADIKA MEHDA

#	Article	IF	CITATIONS
1	Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs. Microbiology Spectrum, 2022, 10, e0126221.	1.2	5
2	Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Applied Microbiology and Biotechnology, 2022, 106, 2175-2190.	1.7	4
3	PNA-mediated efflux inhibition as a therapeutic strategy towards overcoming drug resistance in Mycobacterium smegmatis. Microbial Pathogenesis, 2021, 151, 104737.	1.3	2
4	A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Applied and Environmental Microbiology, 2021, 87, .	1.4	19
5	The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0026221.	1.4	4
6	pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages. Beilstein Journal of Nanotechnology, 2021, 12, 1127-1139.	1.5	0
7	Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. Journal of Bacteriology, 2020, 202, .	1.0	1
8	Enhancing titers and productivity of rCHO clones with a combination of an optimized fed-batch process and ER-stress adaptation. Journal of Biotechnology, 2020, 311, 49-58.	1.9	6
9	ZnO Nanoparticles and Rifampicin Synergistically Damage the Membrane of Mycobacteria. ACS Applied Nano Materials, 2020, 3, 3174-3184.	2.4	10
10	Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis, 2019, 115, 146-153.	0.8	20
11	Targeting wildâ€type and drugâ€resistant mycobacteria in infected macrophages using drugâ€coated nanoparticles. Journal of Chemical Technology and Biotechnology, 2019, 94, 768-776.	1.6	6
12	Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment. Applied Microbiology and Biotechnology, 2018, 102, 10623-10643.	1.7	4
13	The Familial α-Synuclein A53E Mutation Enhances Cell Death in Response to Environmental Toxins Due to a Larger Population of Oligomers. Biochemistry, 2018, 57, 5014-5028.	1.2	19
14	Activation of unfolded protein response pathway is important for valproic acid mediated increase in immunoglobulin G productivity in recombinant Chinese hamster ovary cells. Journal of Bioscience and Bioengineering, 2017, 124, 459-468.	1.1	10
15	Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study. Frontiers in Microbiology, 2017, 8, 2075.	1.5	15
16	Biocompatible citric acid oated iron oxide nanoparticles to enhance the activity of firstâ€ŀine antiâ€ <scp>TB</scp> drugs in <i>Mycobacterium smegmatis</i> . Journal of Chemical Technology and Biotechnology, 2015, 90, 1773-1781.	1.6	25
17	Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnology, 2015, 67, 237-254.	0.7	44
18	Proteomic analysis of Streptomyces coelicolor in response to Ciprofloxacin challenge. Journal of Proteomics, 2014, 97, 222-234.	1.2	10

SARIKA MEHRA

#	Article	IF	CITATIONS
19	Polyacrylic Acid-Coated Iron Oxide Nanoparticles for Targeting Drug Resistance in Mycobacteria. Langmuir, 2014, 30, 15266-15276.	1.6	76
20	Transcriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2). Molecular BioSystems, 2013, 9, 3101.	2.9	30
21	Comprehensive Phylogenetic Analysis of Mycobacteria. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 101-106.	0.4	О
22	Comparative Phylogenomics of Pathogenic and Non-Pathogenic Mycobacterium. PLoS ONE, 2013, 8, e71248.	1.1	41
23	All-trans retinoic acid loaded block copolymer nanoparticles efficiently induce cellular differentiation in HL-60 cells. European Journal of Pharmaceutical Sciences, 2011, 44, 643-652.	1.9	11
24	Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis. PLoS ONE, 2011, 6, e21974.	1.1	20
25	Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics, 2008, 9, 56.	1.2	48
26	A Bistable Gene Switch for Antibiotic Biosynthesis: The Butyrolactone Regulon in Streptomyces coelicolor. PLoS ONE, 2008, 3, e2724.	1.1	47
27	Transcriptome dynamics-based operon prediction and verification in Streptomyces coelicolor. Nucleic Acids Research, 2007, 35, 7222-7236.	6.5	30
28	TimeView. Applied Bioinformatics, 2006, 5, 41-44.	1.7	3
29	A framework to analyze multiple time series data: A case study with Streptomyces coelicolor. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 159-172.	1.4	36
30	On-line adaptation of neural networks for bioprocess control. Computers and Chemical Engineering, 2005, 29, 1047-1057.	2.0	46
31	A kinetic model of quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 91, 848-860.	1.7	40
32	A Boolean algorithm for reconstructing the structure of regulatory networks. Metabolic Engineering, 2004, 6, 326-339.	3.6	34