
Jan H Hoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restricted exchange microenvironments for cell culture. BioTechniques, 2018, 64, 101-109.	0.8	7
2	Spatial information dynamics during early zebrafish development. Developmental Biology, 2013, 377, 126-137.	0.9	4
3	Spatial information analysis of chemotactic trajectories. Journal of Biological Physics, 2012, 38, 365-381.	0.7	5
4	Interactions between Planar Grafted Neurofilament Side-Arms. Journal of Physical Chemistry B, 2011, 115, 7541-7549.	1.2	17
5	Laser inactivation protein patterning of cell culture microenvironments. Lab on A Chip, 2011, 11, 3336.	3.1	11
6	Computing Spatial Information from Fourier Coefficient Distributions. Journal of Membrane Biology, 2011, 241, 59-68.	1.0	5
7	Microelastic properties of lung cell-derived extracellular matrix. Acta Biomaterialia, 2011, 7, 96-105.	4.1	57
8	Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing During Liposome Fusion. Journal of Physical Chemistry B, 2010, 114, 11061-11068.	1.2	60
9	Nanometer-Scale Embossing of Polydimethylsiloxane. Langmuir, 2010, 26, 2187-2190.	1.6	3
10	Conformational Dynamics of Neurofilament Side-Arms. Journal of Physical Chemistry B, 2010, 114, 8879-8886.	1.2	13
11	Electron beam patterning of fibronectin nanodots that support focal adhesion formation. Soft Matter, 2007, 3, 1280.	1.2	16
12	High Fidelity Functional Patterns of an Extracellular Matrix Protein by Electron Beam-Based Inactivation. Journal of the American Chemical Society, 2007, 129, 59-67.	6.6	38
13	Micropatterns of an Extracellular Matrix Protein with Defined Information Content. Langmuir, 2007, 23, 10883-10886.	1.6	2
14	Directed Immobilization of Protein-Coated Nanospheres to Nanometer-Scale Patterns Fabricated by Electron Beam Lithography of Poly(ethylene glycol) Self-Assembled Monolayers. Langmuir, 2006, 22, 5100-5107.	1.6	61
15	Insights into protein structure and function from disorder-complexity space. Proteins: Structure, Function and Bioinformatics, 2006, 66, 16-28.	1.5	23
16	Substrate effects in poly(ethylene glycol) self-assembled monolayers on granular and flame-annealed gold. Journal of Colloid and Interface Science, 2006, 301, 337-341.	5.0	10
17	Amyloid-β aggregates formed at polar-nonpolar interfaces differ from amyloid-β protofibrils produced in aqueous buffers. Microscopy Research and Technique, 2005, 67, 164-174.	1.2	34
18	Amyloid-β Protofibrils Differ from Amyloid-β Aggregates Induced in Dilute Hexafluoroisopropanol in Stability and Morphology. Journal of Biological Chemistry, 2005, 280, 2471-2480.	1.6	100

Jan H Hoh

#	Article	IF	CITATIONS
19	Rapid Assembly of Amyloid-β Peptide at a Liquid/Liquid Interface Produces Unstable β-Sheet Fibersâ€. Biochemistry, 2005, 44, 165-173.	1.2	40
20	Poly(ethylene glycol) Self-Assembled Monolayer Island Growth. Langmuir, 2005, 21, 2981-2987.	1.6	41
21	Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope. Journal of Chemical Education, 2005, 82, 695.	1.1	14
22	Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Letters, 2005, 579, 473-476.	1.3	22
23	Micromechanical Architecture of the Endothelial Cell Cortex. Biophysical Journal, 2005, 88, 670-679.	0.2	166
24	Evidence for a Highly Elastic Shell-Core Organization of Cochlear Outer Hair Cells by Local Membrane Indentation. Biophysical Journal, 2005, 88, 2982-2993.	0.2	23
25	Molecular mechanisms for organizing the neuronal cytoskeleton. BioEssays, 2004, 26, 1017-1025.	1.2	77
26	Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Letters, 2004, 576, 348-352.	1.3	120
27	Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochemical and Biophysical Research Communications, 2004, 324, 489-496.	1.0	49
28	Insights into the Molecular Mechanism of Membrane Fusion from Simulation: Evidence for the Association of Splayed Tails. Physical Review Letters, 2003, 91, 188102.	2.9	175
29	The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT). Molecular Pharmacology, 2003, 64, 1160-1168.	1.0	23
30	Growth of β-Amyloid(1â^'40) Protofibrils by Monomer Elongation and Lateral Association. Characterization of Distinct Products by Light Scattering and Atomic Force Microscopyâ€. Biochemistry, 2002, 41, 6115-6127.	1.2	180
31	Relating Interactions between Neurofilaments to the Structure of Axonal Neurofilament Distributions through Polymer Brush Models. Biophysical Journal, 2002, 82, 2360-2372.	0.2	78
32	Microelastic Mapping of Living Cells: Changes in Relative Elasticity Between Nuclear and Cytoplasmic Regions of Mitotic MDCK Cells. Microscopy and Microanalysis, 2002, 8, 172-173.	0.2	0
33	Role of long-range repulsive forces in organizing axonal neurofilament distributions: Evidence from mice deficient in myelin-associated glycoprotein. Journal of Neuroscience Research, 2002, 68, 681-690.	1.3	35
34	AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force. FEBS Letters, 2001, 505, 374-378.	1.3	78
35	Probing the Machinery of Intracellular Trafficking with the Atomic Force Microscope. Traffic, 2001, 2, 746-756.	1.3	30
36	Predicting properties of intrinsically unstructured proteins. Progress in Biophysics and Molecular Biology, 2001, 76, 131-173.	1.4	70

Јал Н Нон

#	Article	IF	CITATIONS
37	Characterization of DNA Condensates by Atomic Force Microscopy. , 2001, 65, 149-158.		0
38	Improved atomic force microscope cantilever performance by ion beam modification. Review of Scientific Instruments, 2001, 72, 3880-3883.	0.6	31
39	Direct Visualization of Vesicleâ^'Bilayer Complexes by Atomic Force Microscopy. Langmuir, 2000, 16, 9936-9940.	1.6	36
40	Reconstructing Local Interaction Potentials from Perturbations to the Thermally Driven Motion of an Atomic Force Microscope Cantilever. Journal of Physical Chemistry B, 2000, 104, 622-626.	1.2	21
41	Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends in Biotechnology, 1999, 17, 143-150.	4.9	321
42	Cationic silanes stabilize intermediates in DNA condensation. FEBS Letters, 1999, 459, 173-176.	1.3	47
43	Relative Surface Charge Density Mapping with the Atomic Force Microscope. Biophysical Journal, 1999, 76, 528-538.	0.2	129
44	Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Research, 1999, 27, 1943-1949.	6.5	92
45	Functional protein domains from the thermally driven motion of polypeptide chains: A proposal. Proteins: Structure, Function and Bioinformatics, 1998, 32, 223-228.	1.5	66
46	Solid-State DNA Sizing by Atomic Force Microscopy. Analytical Chemistry, 1998, 70, 2123-2129.	3.2	37
47	Early Intermediates in Spermidine-Induced DNA Condensation on the Surface of Mica. Journal of the American Chemical Society, 1998, 120, 8903-8909.	6.6	128
48	Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy. Biophysical Journal, 1998, 74, 1564-1578.	0.2	484
49	Functional protein domains from the thermally driven motion of polypeptide chains: A proposal. , 1998, 32, 223.		3
50	Entropic Exclusion by Neurofilament Sidearms: A Mechanism for Maintaining Interfilament Spacingâ€. Biochemistry, 1997, 36, 15035-15040.	1.2	143
51	Calibration of optical lever sensitivity for atomic force microscopy. Review of Scientific Instruments, 1995, 66, 5096-5097.	0.6	85
52	Friction effects on force measurements with an atomic force microscope. Langmuir, 1993, 9, 3310-3312.	1.6	122
53	Quantized adhesion detected with the atomic force microscope. Journal of the American Chemical Society, 1992, 114, 4917-4918.	6.6	255
54	A strain specific restriction fragment length polymorphism near the rat connexin-32 (Cx32) gap junction gene. Mammalian Genome, 1991, 1, 193-195.	1.0	0