Marketa Hlavackova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological activation of mitochondrial BK _{Ca} channels protects isolated cardiomyocytes against simulated reperfusion-induced injury. Experimental Biology and Medicine, 2013, 238, 233-241.	2.4	38
2	Up-regulation and redistribution of protein kinase C-δ in chronically hypoxic heart. Molecular and Cellular Biochemistry, 2010, 345, 271-282.	3.1	23
3	Developmental and sex differences in cardiac tolerance to ischemia–reperfusion injury: the role of mitochondria. Canadian Journal of Physiology and Pharmacology, 2019, 97, 808-814.	1.4	22
4	Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-11± via downregulation of prolyl hydroxylase 3. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1148-H1158.	3.2	21
5	Interaction between the integrin Mac-1 and signal regulatory protein α (SIRPα) mediates fusion in heterologous cells. Journal of Biological Chemistry, 2019, 294, 7833-7849.	3.4	20
6	N-acetylcysteine Treatment Prevents the Up-Regulation of MnSOD in Chronically Hypoxic Rat Hearts. Physiological Research, 2011, 60, 467-474.	0.9	20
7	Tumour necrosis factorâ€ <i>α</i> contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiologica, 2015, 214, 97-108.	3.8	19
8	Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clinical Science, 2017, 131, 865-881.	4.3	19
9	Chronic intermittent hypoxia affects the cytosolic phospholipase A2î±/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Molecular and Cellular Biochemistry, 2016, 423, 151-163.	3.1	18
10	Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated With Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Frontiers in Endocrinology, 2018, 9, 789.	3.5	18
11	Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cellular Signalling, 2018, 47, 44-51.	3.6	17
12	Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. Journal of Applied Physiology, 2017, 122, 1452-1461.	2.5	16
13	Involvement of PKCε in Cardioprotection Induced by Adaptation to Chronic Continuous Hypoxia. Physiological Research, 2015, 64, 191-201.	0.9	15
14	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	2.6	14
15	Dietary polyunsaturated fatty acids alter myocardial protein kinase C expression and affect cardioprotection induced by chronic hypoxia. Experimental Biology and Medicine, 2007, 232, 823-32.	2.4	13
16	Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids. British Journal of Nutrition, 2009, 102, 1297-1307.	2.3	10
17	<i>In vitro</i> and <i>in vivo</i> investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clinical Science, 2019, 133, 1827-1844.	4.3	10
18	Sex-dependent effect of perinatal hypoxia on cardiac tolerance to oxygen deprivation in adults. Canadian Journal of Physiology and Pharmacology, 2021, 99, 1-8.	1.4	10

#	Article	IF	CITATIONS
19	Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Molecular and Cellular Biochemistry, 2019, 461, 15-22.	3.1	9
20	Proteomic analysis of cardiac ventricles: baso-apical differences. Molecular and Cellular Biochemistry, 2018, 445, 211-219.	3.1	5
21	Antioxidant tempol suppresses heart cytosolic phospholipase A ₂ α stimulated by chronic intermittent hypoxia. Canadian Journal of Physiology and Pharmacology, 2017, 95, 920-927.	1.4	2
22	Do different nuclei in a binucleated cardiomyocyte have different rates of nuclear protein import?. Journal of Molecular and Cellular Cardiology, 2019, 126, 140-142.	1.9	1