Jie Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020781/publications.pdf Version: 2024-02-01

LE HUANC

#	Article	IF	CITATIONS
1	Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, 2013, 152, 82-96.	13.5	508
2	MicroRNA Directly Enhances Mitochondrial Translation during Muscle Differentiation. Cell, 2014, 158, 607-619.	13.5	385
3	SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase. Cell, 2013, 153, 855-868.	13.5	279
4	Genome-wide Analysis Reveals SR Protein Cooperation and Competition in Regulated Splicing. Molecular Cell, 2013, 50, 223-235.	4.5	261
5	Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nature Structural and Molecular Biology, 2014, 21, 997-1005.	3.6	150
6	Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global Control of Alternative Splicing by Regulating U2 snRNP Maturation. Molecular Cell, 2012, 45, 656-668.	4.5	146
7	Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III. Genome Biology, 2020, 21, 158.	3.8	89
8	Deep Insight into the Ganoderma lucidum by Comprehensive Analysis of Its Transcriptome. PLoS ONE, 2012, 7, e44031.	1.1	60
9	Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita. PLoS ONE, 2013, 8, e56686.	1.1	56
10	The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells. Nucleic Acids Research, 2017, 45, 12481-12495.	6.5	26
11	Acetylglutamate kinase is required for both gametophyte function and embryo development in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2017, 59, 642-656.	4.1	20
12	A structured RNA in hepatitisâ€∱B virus postâ€transcriptional regulatory element represses alternative splicing in a sequenceâ€independent and positionâ€dependent manner. FEBS Journal, 2011, 278, 1533-1546.	2.2	16
13	BAT Hi-C maps global chromatin interactions in an efficient and economical way. Methods, 2020, 170, 38-47.	1.9	13
14	Multiplex Analysis of PolyA-Linked Sequences (MAPS): An RNA-Seq Strategy to Profile Poly(A+) RNA. Methods in Molecular Biology, 2014, 1125, 169-178.	0.4	10
15	BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9