Jan Rehwinkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020402/publications.pdf Version: 2024-02-01

IAN REHMINKEL

#	Article	IF	CITATIONS
1	The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. ELife, 2022, 11, .	6.0	16
2	Varicellaâ€Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO Journal, 2022, 41, .	7.8	21
3	Multi-Modal Characterization of Monocytes in Idiopathic Pulmonary Fibrosis Reveals a Primed Type I Interferon Immune Phenotype. Frontiers in Immunology, 2021, 12, 623430.	4.8	34
4	Inclusion of cGAMP within virusâ€like particle vaccines enhances their immunogenicity. EMBO Reports, 2021, 22, e52447.	4.5	24
5	Fractional response analysis reveals logarithmic cytokine responses in cellular populations. Nature Communications, 2021, 12, 4175.	12.8	9
6	The RNA sensor MDA5 detects SARS-CoV-2 infection. Scientific Reports, 2021, 11, 13638.	3.3	93
7	Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nature Cell Biology, 2021, 23, 704-717.	10.3	40
8	Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses. Immunity, 2021, 54, 1961-1975.e5.	14.3	69
9	Interferon induction held captive in tumor cells. Molecular Cell, 2021, 81, 4109-4110.	9.7	0
10	Hypoxia Regulates Endogenous Double-Stranded RNA Production via Reduced Mitochondrial DNA Transcription. Frontiers in Oncology, 2021, 11, 779739.	2.8	13
11	Deoxyguanosine is a TLR7 agonist. European Journal of Immunology, 2020, 50, 56-62.	2.9	19
12	Nucleic Acid Sensors and Programmed Cell Death. Journal of Molecular Biology, 2020, 432, 552-568.	4.2	57
13	SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nature Communications, 2020, 11, 4938.	12.8	272
14	cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nature Genetics, 2020, 52, 1364-1372.	21.4	105
15	PNP inhibitors selectively kill cancer cells lacking SAMHD1. Molecular and Cellular Oncology, 2020, 7, 1804308.	0.7	4
16	Mutations in <i>COPA</i> lead to abnormal trafficking of STING to the Golgi and interferon signaling. Journal of Experimental Medicine, 2020, 217, .	8.5	130
17	Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	71
18	Hypoxia Induces Transcriptional and Translational Downregulation of the Type I IFN Pathway in Multiple Cancer Cell Types. Cancer Research, 2020, 80, 5245-5256.	0.9	46

Jan Rehwinkel

#	Article	IF	CITATIONS
19	Redox homeostasis maintained by GPX4 facilitates STING activation. Nature Immunology, 2020, 21, 727-735.	14.5	188
20	RIG-I Plays a Dominant Role in the Induction of Transcriptional Changes in Zika Virus-Infected Cells, which Protect from Virus-Induced Cell Death. Cells, 2020, 9, 1476.	4.1	29
21	RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews Immunology, 2020, 20, 537-551.	22.7	838
22	Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunology Research, 2020, 8, 685-697.	3.4	6
23	SAMHD1 Limits the Efficacy of Forodesine in Leukemia by Protecting Cells against the Cytotoxicity of dGTP. Cell Reports, 2020, 31, 107640.	6.4	16
24	Innate immunology in COVID-19—a living review. Part I: viral entry, sensing and evasion. Oxford Open Immunology, 2020, 1, iqaa004.	2.8	7
25	<scp>SAMHD</scp> 1â€mediated <scp>dNTP</scp> degradation is required for efficient <scp>DNA</scp> repair during antibody class switch recombination. EMBO Journal, 2020, 39, e102931.	7.8	23
26	Regulation and inhibition of the DNA sensor cGAS. EMBO Reports, 2020, 21, e51345.	4.5	32
27	PA-X antagonises MAVS-dependent accumulation of early type I interferon messenger RNAs during influenza A virus infection. Scientific Reports, 2019, 9, 7216.	3.3	25
28	A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends in Microbiology, 2019, 27, 75-85.	7.7	178
29	Antiviral activity of bone morphogenetic proteins and activins. Nature Microbiology, 2019, 4, 339-351.	13.3	39
30	A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Science Alliance, 2019, 2, e201900355.	2.8	18
31	Infection with a Brazilian isolate of Zika virus generates RIGâ€I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling. European Journal of Immunology, 2018, 48, 1120-1136.	2.9	106
32	B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 801-813.	5.6	63
33	Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7768-E7775.	7.1	150
34	Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature, 2018, 560, 238-242.	27.8	397
35	A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes and Development, 2017, 31, 353-369.	5.9	168
36	A G1â€like state allows <scp>HIV</scp> â€l to bypass <scp>SAMHD</scp> 1 restriction in macrophages. EMBO Journal, 2017, 36, 604-616.	7.8	82

#	Article	IF	CITATIONS
37	RECONsidering Sensing of Cyclic Dinucleotides. Immunity, 2017, 46, 337-339.	14.3	7
38	Sensing of viral and endogenous <scp>RNA</scp> by <scp>ZBP</scp> 1/ <scp>DAI</scp> induces necroptosis. EMBO Journal, 2017, 36, 2529-2543.	7.8	171
39	Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biology, 2017, 19, 1061-1070.	10.3	741
40	Purification of Cyclic GMP-AMP from Viruses and Measurement of Its Activity in Cell Culture. Methods in Molecular Biology, 2017, 1656, 143-152.	0.9	3
41	Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1. Cell Reports, 2016, 16, 1492-1501.	6.4	96
42	Is antiâ€viral defence the evolutionary origin of mRNA turnover? (Comment on DOI) Tj ETQq0 0 0 rgBT /Overlock	10 If 50	543 Td (10.1
43	Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0005048.	3.0	193
44	Mouse superkillerâ€2â€like helicase DDX60 is dispensable for type I IFN induction and immunity to multiple viruses. European Journal of Immunology, 2015, 45, 3386-3403.	2.9	33
45	RNA degradation in antiviral immunity and autoimmunity. Trends in Immunology, 2015, 36, 179-188.	6.8	76
46	Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514, 372-375.	27.8	459
47	Keeping your armour intact: How HIVâ€1 evades detection by the innate immune system. BioEssays, 2014, 36, 649-657.	2.5	1
48	Mouse knockout models for HIV-1 restriction factors. Cellular and Molecular Life Sciences, 2014, 71, 3749-3766.	5.4	16
49	SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood, 2014, 123, 1021-1031.	1.4	205
50	Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. ELife, 2014, 3, e01535.	6.0	99
51	SAMHD1-dependent retroviral control and escape in mice. EMBO Journal, 2013, 32, 2454-2462.	7.8	141
52	RNA sensing: the more RIGâ€I the merrier?. EMBO Reports, 2013, 14, 751-752.	4.5	4
53	SAMHD1-dependent retroviral control and escape in mice. Retrovirology, 2013, 10, .	2.0	2
54	Targeting the viral Achilles' heel: recognition of 5′-triphosphate RNA in innate anti-viral defence. Current Opinion in Microbiology, 2013, 16, 485-492.	5.1	19

Jan Rehwinkel

#	Article	IF	CITATIONS
55	SAMHD1, A Putative Tumour Suppressor, Is Recurrently Mutated in Chronic Lymphocytic Leukaemia, and Is Associated with Poor Risk Features. Blood, 2012, 120, 713-713.	1.4	0
56	Exposing Viruses: RNA Patterns Sensed by RIG-I-like Receptors. Journal of Clinical Immunology, 2010, 30, 491-495.	3.8	13
57	PYHIN proteins: center stage in DNA sensing. Nature Immunology, 2010, 11, 984-986.	14.5	33
58	RIGorous Detection: Exposing Virus Through RNA Sensing. Science, 2010, 327, 284-286.	12.6	148
59	RIG-I Detects Viral Genomic RNA during Negative-Strand RNA Virus Infection. Cell, 2010, 140, 397-408.	28.9	508
60	Protein Kinase R Contributes to Immunity against Specific Viruses by Regulating Interferon mRNA Integrity. Cell Host and Microbe, 2010, 7, 354-361.	11.0	137
61	Deadenylation is a widespread effect of miRNA regulation. Rna, 2009, 15, 21-32.	3.5	345
62	Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 2009, 83, 10761-10769.	3.4	377
63	Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Human Molecular Genetics, 2009, 18, R130-R136.	2.9	258
64	Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila. PLoS Genetics, 2009, 5, e1000525.	3.5	87
65	Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes and Development, 2007, 21, 2558-2570.	5.9	247
66	mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Letters, 2007, 581, 2845-2853.	2.8	178
67	A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO Journal, 2007, 26, 1591-1601.	7.8	197
68	mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes and Development, 2006, 20, 1885-1898.	5.9	824
69	MicroRNAs Silence Gene Expression by Repressing Protein Expression and/or by Promoting mRNA Decay. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 523-530.	1.1	217
70	Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends in Biochemical Sciences, 2006, 31, 639-646.	7.5	125
71	Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster. Molecular and Cellular Biology, 2006, 26, 2965-2975.	2.3	125
72	A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. Rna, 2005, 11, 1640-1647.	3.5	398

#	Article	IF	CITATIONS
73	Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. Rna, 2005, 11, 1530-1544.	3.5	226
74	Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nature Structural and Molecular Biology, 2004, 11, 558-566.	8.2	190
75	The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nature Structural and Molecular Biology, 2004, 11, 1001-1007.	8.2	263