Ryan C Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020077/publications.pdf

Version: 2024-02-01

56 papers 3,754 citations

257101 24 h-index 205818 48 g-index

68 all docs

68
docs citations

68 times ranked 6380 citing authors

#	Article	IF	CITATIONS
1	Staphylococcus aureus Overcomes Anaerobe-Derived Short-Chain Fatty Acid Stress via FadX and the CodY Regulon. Journal of Bacteriology, 2022, 204, e0006422.	1.0	8
2	Natural rodent model of viral transmission reveals biological features of virus population dynamics. Journal of Experimental Medicine, 2022, 219, .	4.2	18
3	Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. Journal of Virology, 2022, 96, e0035222.	1.5	16
4	Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity, 2022, 55, 895-911.e10.	6.6	19
5	JMM Profile: Achromobacter xylosoxidans: the cloak-and-dagger opportunist. Journal of Medical Microbiology, 2022, 71, .	0.7	6
6	Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLoS Pathogens, 2021, 17, e1009292.	2.1	76
7	Diversity of cystic fibrosis chronic rhinosinusitis microbiota correlates with different pathogen dominance. Journal of Cystic Fibrosis, 2021, 20, 678-681.	0.3	9
8	Anaerobic Microbiota Derived from the Upper Airways Impact Staphylococcus aureus Physiology. Infection and Immunity, 2021, 89, e0015321.	1.0	12
9	Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. MBio, 2021, 12, e0176321.	1.8	26
10	Host–Microbe Interactions: Wallowing in Mucus Mire. Current Biology, 2021, 31, R85-R88.	1.8	0
11	A NOVEL AIRWAY STENT COATING TO REDUCE MUCOUS IMPACTION. Chest, 2021, 160, A55.	0.4	O
12	Treatment of Biofilms by Atmospheric Pressure RF Plasma Jets: Touching and Remote *., 2021, , .		0
13	Draft Genome Sequence of Scheffersomyces spartinae ARV011, a Marine Yeast Isolate. Microbiology Resource Announcements, 2021, 10, e0065221.	0.3	1
14	The impact of <i>Lactococcus lactis</i> (probiotic nasal rinse) coâ€culture on growth of patientâ€derived strains of <i>Pseudomonas aeruginosa</i> International Forum of Allergy and Rhinology, 2020, 10, 444-449.	1.5	14
15	Risk factors for neoâ€osteogenesis in cystic fibrosis and nonâ€'cystic fibrosis chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 505-510.	1.5	5
16	Contribution of Short Chain Fatty Acids to the Growth of Pseudomonas aeruginosa in Rhinosinusitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 412.	1.8	15
17	Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nature Communications, 2020, 11, 2287.	5. 8	25
18	Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis. MSphere, 2020, 5, .	1.3	33

#	Article	IF	Citations
19	The Microbiome and Chronic Rhinosinusitis. Immunology and Allergy Clinics of North America, 2020, 40, 251-263.	0.7	32
20	Ceftolozane-tazobactam and ceftazidime-avibactam activity against \hat{l}^2 -lactam-resistant Pseudomonas aeruginosa and extended-spectrum \hat{l}^2 -lactamase-producing Enterobacterales clinical isolates from U.S. medical centres. Journal of Global Antimicrobial Resistance, 2020, 22, 689-694.	0.9	31
21	A putative enoyl-CoA hydratase contributes to biofilm formation and the antibiotic tolerance of Achromobacter xylosoxidans. Npj Biofilms and Microbiomes, 2019, 5, 20.	2.9	18
22	Refinement of metabolite detection in cystic fibrosis sputum reveals heme correlates with lung function decline. PLoS ONE, 2019, 14, e0226578.	1.1	15
23	Generation of ¹³ C-Labeled MUC5AC Mucin Oligosaccharides for Stable Isotope Probing of Host-Associated Microbial Communities. ACS Infectious Diseases, 2019, 5, 385-393.	1.8	8
24	Agmatine accumulation by Pseudomonas aeruginosa clinical isolates confers antibiotic tolerance and dampens host inflammation. Journal of Medical Microbiology, 2019, 68, 446-455.	0.7	13
25	Pulmonary aspiration of sinus secretions in patients with cystic fibrosis. International Forum of Allergy and Rhinology, 2018, 8, 385-388.	1.5	14
26	16S rRNA gene sequencing reveals site-specific signatures of the upper and lower airways of cystic fibrosis patients. Journal of Cystic Fibrosis, 2018, 17, 204-212.	0.3	31
27	BAL Fluid Metaproteome in Acute Respiratory Failure. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 648-652.	1.4	6
28	Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME Journal, 2018, 12, 2723-2735.	4.4	121
29	Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radical Biology and Medicine, 2018, 124, 275-287.	1.3	127
30	Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin. Infection and Immunity, 2017, 85, .	1.0	22
31	Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells. PLoS Genetics, 2017, 13, e1006878.	1.5	18
32	Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease. PLoS Pathogens, 2016, 12, e1005846.	2.1	170
33	Mechanism of bacteria inactivation by an atmospheric pressure plasma jet. , 2016, , .		1
34	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	1.2	198
35	Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology, 2016, 34, 942-949.	9.4	623
36	Development of a Chronic Wound Healing Device 1. Journal of Medical Devices, Transactions of the ASME, 2016, 10 , .	0.4	0

#	Article	IF	CITATIONS
37	Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate. Genome Announcements, 2015, 3, .	0.8	8
38	Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 244-249.	3.3	405
39	The Upper Respiratory Tract as a Microbial Source for Pulmonary Infections in Cystic Fibrosis. Parallels from Island Biogeography. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1309-1315.	2.5	100
40	Spatial Distribution of Respiratory Metabolisms in Lab-Grown and in vivo Pseudomonas aeruginosa Biofilms Microscopy and Microanalysis, 2014, 20, 1188-1189.	0.2	0
41	Homogenization of <i>Pseudomonas aeruginosa</i> PAO1 biofilms visualized by freezeâ€substitution electron microscopy. Biotechnology and Bioengineering, 2013, 110, 1405-1418.	1.7	4
42	Ferrous Iron Is a Significant Component of Bioavailable Iron in Cystic Fibrosis Airways. MBio, 2013, 4, .	1.8	147
43	Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State. Journal of Bacteriology, 2013, 195, 1371-1380.	1.0	268
44	Phenazine Content in the Cystic Fibrosis Respiratory Tract Negatively Correlates with Lung Function and Microbial Complexity. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 738-745.	1.4	158
45	Hippea jasoniae sp. nov. and Hippea alviniae sp. nov., thermoacidophilic members of the class Deltaproteobacteria isolated from deep-sea hydrothermal vent deposits. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1252-1258.	0.8	23
46	<i>Caenorhabditis elegans</i> NPR-1–mediated behaviors are suppressed in the presence of mucoid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12887-12892.	3.3	40
47	The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of $\langle i \rangle$ Rhodopseudomonas palustris $\langle i \rangle$ TIE-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1045-51.	3.3	58
48	A Putative ABC Transporter, HatABCDE, Is among Molecular Determinants of Pyomelanin Production in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2010, 192, 5962-5971.	1.0	52
49	Impact of growth environment and physiological state on metal immobilization byPseudomonas aeruginosaPAO1. Canadian Journal of Microbiology, 2010, 56, 527-538.	0.8	11
50	Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in <i>Rhodopseudomonas palustris</i> TIE-1. Journal of Bacteriology, 2009, 191, 6145-6156.	1.0	189
51	2â€Methylhopanoids are maximally produced in akinetes of <i>Nostoc punctiforme</i> : geobiological implications. Geobiology, 2009, 7, 524-532.	1.1	75
52	Biofilms, Minerals, and Bronchioles: Understanding Microenvironments Through Correlative Microscopy. Microscopy and Microanalysis, 2009, 15, 68-69.	0.2	0
53	Mapping the Speciation of Iron in <i>Pseudomonas aeruginosa</i> Transmission X-ray Microscopy. Environmental Science & Eamp; Technology, 2008, 42, 8766-8772.	4.6	43
54	Application of a pH-Sensitive Fluoroprobe (C-SNARF-4) for pH Microenvironment Analysis in Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 2005, 71, 2501-2510.	1.4	172

RYAN C HUNTER

#	Article	IF	CITATIONS
55	High-Resolution Visualization of Pseudomonas aeruginosa PAO1 Biofilms by Freeze-Substitution Transmission Electron Microscopy. Journal of Bacteriology, 2005, 187, 7619-7630.	1.0	91
56	Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids and Surfaces B: Biointerfaces, 2002, 23, 213-230.	2.5	167