Rainer Haag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9019583/publications.pdf Version: 2024-02-01

PAINED HAAC

#	Article	IF	CITATIONS
1	Polymer Therapeutics: Concepts and Applications. Angewandte Chemie - International Edition, 2006, 45, 1198-1215.	13.8	1,037
2	Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 2012, 64, 866-884.	13.7	978
3	Multivalency as a Chemical Organization and Action Principle. Angewandte Chemie - International Edition, 2012, 51, 10472-10498.	13.8	854
4	Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy. Angewandte Chemie - International Edition, 2002, 41, 1329-1334.	13.8	627
5	Protein Interactions with Polymer Coatings and Biomaterials. Angewandte Chemie - International Edition, 2014, 53, 8004-8031.	13.8	614
6	Electron Transport through Thin Organic Films in Metalâ^'Insulatorâ^'Metal Junctions Based on Self-Assembled Monolayers. Journal of the American Chemical Society, 2001, 123, 5075-5085.	13.7	597
7	Dendritic Polyglycerols for Biomedical Applications. Advanced Materials, 2010, 22, 190-218.	21.0	590
8	Supramolecular Drugâ€Đelivery Systems Based on Polymeric Core–Shell Architectures. Angewandte Chemie - International Edition, 2004, 43, 278-282.	13.8	561
9	Distance Dependence of Electron Tunneling through Self-Assembled Monolayers Measured by Conducting Probe Atomic Force Microscopy:  Unsaturated versus Saturated Molecular Junctions. Journal of Physical Chemistry B, 2002, 106, 2813-2816.	2.6	461
10	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	47.7	425
11	Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chemical Society Reviews, 2012, 41, 2824-2848.	38.1	384
12	Modern Separation Techniques for the Efficient Workup in Organic Synthesis. Angewandte Chemie - International Edition, 2002, 41, 3964-4000.	13.8	326
13	Dendritic polyglycerol: a new versatile biocompatible material. Reviews in Molecular Biotechnology, 2002, 90, 257-267.	2.8	313
14	Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chemical Society Reviews, 2015, 44, 1948-1973.	38.1	298
15	Self-Assembled Monolayers of Dendritic Polyglycerol Derivatives on Gold That Resist the Adsorption of Proteins. Chemistry - A European Journal, 2004, 10, 2831-2838.	3.3	268
16	Inhibition of Influenza Virus Infection by Multivalent Sialicâ€Acidâ€Functionalized Gold Nanoparticles. Small, 2010, 6, 2900-2906.	10.0	257
17	Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts inAvivo. Biomaterials, 2016, 84, 250-261.	11.4	257
18	Hyperbranched Polyether Polyols: A Modular Approach to Complex Polymer Architectures. Advanced Materials, 2000, 12, 235-239.	21.0	244

#	Article	IF	CITATIONS
19	Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19679-19684.	7.1	243
20	Electrical Breakdown of Aliphatic and Aromatic Self-Assembled Monolayers Used as Nanometer-Thick Organic Dielectrics. Journal of the American Chemical Society, 1999, 121, 7895-7906.	13.7	230
21	Supramolecular Aggregates of Dendritic Multishell Architectures as Universal Nanocarriers. Angewandte Chemie - International Edition, 2007, 46, 1265-1269.	13.8	226
22	pH-Responsive Molecular Nanocarriers Based on Dendritic Core-Shell Architectures. Angewandte Chemie - International Edition, 2002, 41, 4252-4256.	13.8	215
23	Nanoparticles for skin penetration enhancement – A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 243-250.	4.3	210
24	Controlled Synthesis of Cell-Laden Microgels by Radical-Free Gelation in Droplet Microfluidics. Journal of the American Chemical Society, 2012, 134, 4983-4989.	13.7	208
25	An Approach to Glycerol Dendrimers and Pseudo-Dendritic Polyglycerols. Journal of the American Chemical Society, 2000, 122, 2954-2955.	13.7	205
26	Musselâ€Inspired Dendritic Polymers as Universal Multifunctional Coatings. Angewandte Chemie - International Edition, 2014, 53, 11650-11655.	13.8	202
27	Universal polymer coatings and their representative biomedical applications. Materials Horizons, 2015, 2, 567-577.	12.2	200
28	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	48.7	187
29	Dendritic nanocarriers based on hyperbranched polymers. Chemical Society Reviews, 2015, 44, 4145-4164.	38.1	175
30	Supramolecular Architectures of Dendritic Amphiphiles in Water. Chemical Reviews, 2016, 116, 2079-2102.	47.7	174
31	Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. Journal of the American Chemical Society, 2011, 133, 20288-20300.	13.7	166
32	Highly fluorescent water-soluble polyglycerol-dendronized perylene bisimide dyes. Chemical Communications, 2010, 46, 1884-1886.	4.1	156
33	Pathogen Inhibition by Multivalent Ligand Architectures. Journal of the American Chemical Society, 2016, 138, 8654-8666.	13.7	155
34	Dendrimers and Hyperbranched Polymers as High-Loading Supports for Organic Synthesis. Chemistry - A European Journal, 2001, 7, 327-335.	3.3	148
35	Effect of Polymer Brush Architecture on Antibiofouling Properties. Biomacromolecules, 2011, 12, 4169-4172.	5.4	145
36	A Microgel Construction Kit for Bioorthogonal Encapsulation and pHâ€Controlled Release of Living Cells. Angewandte Chemie - International Edition, 2013, 52, 13538-13543.	13.8	145

#	Article	IF	CITATIONS
37	High-loading polyglycerol supported reagents for Mitsunobu- and acylation-reactions and other useful polyglycerol derivatives. Molecular Diversity, 2005, 9, 305-316.	3.9	143
38	An Approach to Coreâ ``Shell-Type Architectures in Hyperbranched Polyglycerols by Selective Chemical Differentiation. Macromolecules, 2000, 33, 8158-8166.	4.8	139
39	Surface Roughness Gradients Reveal Topographyâ€Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells. Small, 2020, 16, e1905422.	10.0	134
40	Metal–Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. Nano Letters, 2019, 19, 5885-5896.	9.1	133
41	Hydrogels and Their Role in Biosensing Applications. Advanced Healthcare Materials, 2021, 10, e2100062.	7.6	133
42	Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 2013, 169, 289-295.	9.9	132
43	Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nature Communications, 2017, 8, 14281.	12.8	130
44	Surface Roughness and Substrate Stiffness Synergize To Drive Cellular Mechanoresponse. Nano Letters, 2020, 20, 748-757.	9.1	129
45	A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. Journal of Controlled Release, 2014, 174, 209-216.	9.9	128
46	Atomic Fe–N _x Coupled Openâ€Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg–Air Batteries. Advanced Materials, 2018, 30, e1802669.	21.0	128
47	Dendritic Polyglycerol Sulfates as New Heparin Analogues and Potent Inhibitors of the Complement System. Bioconjugate Chemistry, 2004, 15, 162-167.	3.6	127
48	Synthesis and Characterization of Glycerol Dendrons, Self-Assembled Monolayers on Gold: A Detailed Study of Their Protein Resistance. Biomacromolecules, 2009, 10, 1043-1054.	5.4	126
49	Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie, 2010, 92, 1242-1251.	2.6	126
50	Supramolecular Polymers as Surface Coatings: Rapid Fabrication of Healable Superhydrophobic and Slippery Surfaces. Advanced Materials, 2014, 26, 7358-7364.	21.0	126
51	A Universal Approach to Crosslinked Hierarchical Polymer Multilayers as Stable and Highly Effective Antifouling Coatings. Advanced Materials, 2014, 26, 2688-2693.	21.0	124
52	A Convergent Approach to Biocompatible Polyglycerol "Click―Dendrons for the Synthesis of Modular Core–Shell Architectures and Their Transport Behavior. Chemistry - A European Journal, 2008, 14, 9202-9214.	3.3	121
53	Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection. Nano Letters, 2015, 15, 6051-6057.	9.1	117
54	Hyperbranched PEI with Various Oligosaccharide Architectures: Synthesis, Characterization, ATP Complexation, and Cellular Uptake Properties. Biomacromolecules, 2009, 10, 1114-1124.	5.4	116

Rainer Haag

#	Article	IF	CITATIONS
55	<i>In vivo</i> delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB Journal, 2010, 24, 3122-3134.	0.5	115
56	Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials, 2010, 31, 4268-4277.	11.4	114
57	Inhibition of Influenza Virus Activity by Multivalent Clycoarchitectures with Matched Sizes. ChemBioChem, 2011, 12, 887-895.	2.6	113
58	Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Advanced Materials, 2018, 30, e1706709.	21.0	112
59	Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. Journal of Controlled Release, 2011, 151, 295-301.	9.9	111
60	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	9.9	111
61	Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection. Advanced Materials, 2021, 33, e2100637.	21.0	107
62	Polyether based amphiphiles for delivery of active components. Polymer, 2012, 53, 3053-3078.	3.8	106
63	Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS Nano, 2018, 12, 6429-6442.	14.6	106
64	Influence of nanocarrier type and size on skin delivery of hydrophilic agents. International Journal of Pharmaceutics, 2009, 377, 169-172.	5.2	105
65	Dendritic Polyamines: Simple Access to New Materials with Defined Treelike Structures for Application in Nonviral Gene Delivery. ChemBioChem, 2004, 5, 1081-1087.	2.6	104
66	Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3725-3728.	2.2	102
67	Generation of Micrometer-Sized Patterns for Microanalytical Applications Using a Laser Direct-Write Method and Microcontact Printing. Analytical Chemistry, 1998, 70, 4645-4652.	6.5	100
68	Musselâ€Inspired Polymerâ€Based Universal Spray Coating for Surface Modification: Fast Fabrication of Antibacterial and Superhydrophobic Surface Coatings. Advanced Materials Interfaces, 2018, 5, 1701254.	3.7	99
69	Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Biomacromolecules, 2017, 18, 1762-1771.	5.4	98
70	Combination of Surface Charge and Size Controls the Cellular Uptake of Functionalized Graphene Sheets. Advanced Functional Materials, 2017, 27, 1701837.	14.9	98
71	Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials, 2011, 32, 1311-1316.	11.4	97
72	Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nature Communications, 2019, 10, 4546.	12.8	95

#	Article	IF	CITATIONS
73	Biocompatible Functionalized Polyglycerol Microgels with Cell Penetrating Properties. Angewandte Chemie - International Edition, 2009, 48, 7540-7545.	13.8	93
74	Synthesis, Reductive Cleavage, and Cellular Interaction Studies of Biodegradable, Polyglycerol Nanogels. Advanced Functional Materials, 2010, 20, 4133-4138.	14.9	93
75	Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chemical Communications, 2008, , 5851.	4.1	90
76	Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release. Journal of Controlled Release, 2015, 205, 15-24.	9.9	89
77	Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano, 2018, 12, 8646-8661.	14.6	89
78	Water-Soluble Dendritic Core–Shell-Type Architectures Based on Polyglycerol for Solubilization of Hydrophobic Drugs. Chemistry - A European Journal, 2007, 13, 4187-4196.	3.3	86
79	Multivalent Peptide–Nanoparticle Conjugates for Influenzaâ€Virus Inhibition. Angewandte Chemie - International Edition, 2017, 56, 5931-5936.	13.8	86
80	Copolymers of Glycidol and Glycidyl Ethers:Â Design of Branched Polyether Polyols by Combination of Latent Cyclic AB2and ABR Monomers. Macromolecules, 2000, 33, 7682-7692.	4.8	85
81	Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale, 2014, 6, 2353.	5.6	85
82	A New Family of Nonionic Dendritic Amphiphiles Displaying Unexpected Packing Parameters in Micellar Assemblies. Journal of the American Chemical Society, 2010, 132, 11119-11124.	13.7	83
83	Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection inÂvitro and inÂvivo. Biomaterials, 2017, 138, 22-34.	11.4	83
84	Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018, 77, 28-37.	8.3	83
85	Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. Nanoscale, 2019, 11, 15804-15809.	5.6	83
86	Waterâ€ S oluble pHâ€Responsive Dendritic Coreâ€Shell Nanocarriers for Polar Dyes Based on Poly(ethylene) Tj E	100000	rgBT /Overloc
87	Biofunctional nanosystems based on dendritic polymers. Journal of Controlled Release, 2012, 161, 484-495.	9.9	82
88	pHâ€Responsive Micro―and Nanocarrier Systems. Angewandte Chemie - International Edition, 2014, 53, 49-51.	13.8	81
89	Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 2016, 239, 159-168.	9.9	81

⁹⁰Linear Poly(methyl glycerol) and Linear Polyglycerol as Potent Protein and Cell Resistant Alternatives
to Poly(ethylene glycol). Chemistry - an Asian Journal, 2010, 5, 1992-2000.3.380

Rainer Haag

#	Article	IF	CITATIONS
91	Development of pH-responsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1030-1034.	2.2	79
92	Penetration of normal, damaged and diseased skin — An in vitro study on dendritic core–multishell nanotransporters. Journal of Controlled Release, 2014, 185, 45-50.	9.9	79
93	Multivalent glycoconjugates as vaccines and potential drug candidates. MedChemComm, 2014, 5, 862-878.	3.4	79
94	Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms. Journal of Polymer Science Part A, 2006, 44, 5740-5749.	2.3	78
95	Synthesis of Dendritic Polyglycerol Anions and Their Efficiency Toward L-Selectin Inhibition. Biomacromolecules, 2011, 12, 2502-2511.	5.4	78
96	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie - International Edition, 2018, 57, 11198-11202.	13.8	78
97	Water-Soluble Dendritic Architectures with Carbohydrate Shells for the Templation and Stabilization of Catalytically Active Metal Nanoparticles. Macromolecules, 2005, 38, 8308-8315.	4.8	77
98	Chiral Hyperbranched Dendron Analogues. Macromolecules, 2000, 33, 253-254.	4.8	75
99	Syntheses and Phase-Transfer Properties of Dendritic Nanocarriers That Contain Perfluorinated Shell Structures. Chemistry - A European Journal, 2004, 10, 2822-2830.	3.3	75
100	Influences of opioids and nanoparticles on in vitro wound healing models. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 34-42.	4.3	74
101	Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab on A Chip, 2016, 16, 65-69.	6.0	74
102	A Dyadic Sensitizer for Dye Solar Cells with High Energy-Transfer Efficiency in the Device. ChemPhysChem, 2007, 8, 1548-1556.	2.1	73
103	Patterned Polymer Multilayers as Etch Resists. Langmuir, 1999, 15, 6862-6867.	3.5	72
104	Hyperbranched Polymers for the Formation and Stabilization of ZnO Nanoparticles. Chemistry of Materials, 2010, 22, 6301-6309.	6.7	72
105	Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 35411-35418.	8.0	72
106	Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors. Nature Communications, 2020, 11, 564.	12.8	72
107	Surface-Independent Hierarchical Coatings with Superamphiphobic Properties. ACS Applied Materials & amp; Interfaces, 2016, 8, 29117-29127.	8.0	71
108	BMPR2 acts as aÂgatekeeper to protect endothelial cells from increased TGFβÂresponses and altered cell mechanics. PLoS Biology, 2019, 17, e3000557.	5.6	71

#	Article	IF	CITATIONS
109	Fluorescence Imaging with Multifunctional Polyglycerol Sulfates: Novel Polymeric near-IR Probes Targeting Inflammation. Bioconjugate Chemistry, 2011, 22, 2453-2460.	3.6	70
110	Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. Nanoscale, 2017, 9, 3774-3783.	5.6	70
111	Study of Single Protein Adsorption onto Monoamino Oligoglycerol Derivatives: A Structureâ^'Activity Relationship. Langmuir, 2009, 25, 5703-5712.	3.5	69
112	Dendritic Polyglycerols with Oligoamine Shells Show Low Toxicity and High siRNA Transfection Efficiency in Vitro. Bioconjugate Chemistry, 2010, 21, 1744-1752.	3.6	69
113	Dendritic multishell architectures for drug and dye transport. Journal of Controlled Release, 2008, 132, 289-294.	9.9	68
114	Cross-Linked Hyperbranched Polyglycerols as Hosts for Selective Binding of Guest Molecules. Journal of the American Chemical Society, 2009, 131, 10574-10580.	13.7	68
115	An Amphiphilic Perylene Imido Diester for Selective Cellular Imaging. Bioconjugate Chemistry, 2013, 24, 153-158.	3.6	68
116	The Role of Dimension in Multivalent Binding Events: Structure–Activity Relationship of Dendritic Polyglycerol Sulfate Binding to <scp>L</scp> ‧electin in Correlation with Size and Surface Charge Density. Macromolecular Bioscience, 2011, 11, 1088-1098.	4.1	67
117	Material development for dye solar modules: results from an integrated approach. Progress in Photovoltaics: Research and Applications, 2008, 16, 489-501.	8.1	66
118	Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter, 2010, 6, 4968.	2.7	66
119	DNA ontrolled Bivalent Presentation of Ligands for the Estrogen Receptor. Angewandte Chemie - International Edition, 2011, 50, 8592-8596.	13.8	65
120	Functionalized Graphene as Extracellular Matrix Mimics: Toward Wellâ€Defined 2D Nanomaterials for Multivalent Virus Interactions. Advanced Functional Materials, 2017, 27, 1606477.	14.9	65
121	Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angewandte Chemie - International Edition, 2021, 60, 3882-3904.	13.8	65
122	Polyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Rheumatoid Arthritis. Theranostics, 2014, 4, 629-641.	10.0	65
123	Linear and Hyperbranched Polyglycerol Derivatives as Excellent Bioinert Glass Coating Materials. Advanced Engineering Materials, 2011, 13, B501.	3.5	64
124	Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano, 2016, 10, 2028-2045.	14.6	64
125	An Experimental Thermochemical and Theoretical Study of Triquinacene:Â Definitive Disproof of Its Neutral Homoaromaticity. Journal of the American Chemical Society, 1998, 120, 11130-11135.	13.7	62
126	Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores. Soft Matter, 2012, 8, 10636.	2.7	62

#	Article	IF	CITATIONS
127	Targeted Delivery of Dendritic Polyglycerol–Doxorubicin Conjugates by scFv-SNAP Fusion Protein Suppresses EGFR ⁺ Cancer Cell Growth. Biomacromolecules, 2013, 14, 2510-2520.	5.4	62
128	Charge Matters: Mutations in Omicron Variant Favor Binding to Cells. ChemBioChem, 2022, 23, e202100681.	2.6	62
129	Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics, 2013, 1, 3-8.	7.8	61
130	Multivalent Anchoring and Cross-Linking of Mussel-Inspired Antifouling Surface Coatings. Biomacromolecules, 2014, 15, 3061-3071.	5.4	61
131	Glycine-Terminated Dendritic Amphiphiles for Nonviral Gene Delivery. Biomacromolecules, 2012, 13, 3087-3098.	5.4	60
132	Size Dependence of Steric Shielding and Multivalency Effects for Globular Binding Inhibitors. Journal of the American Chemical Society, 2015, 137, 2572-2579.	13.7	60
133	Tribenzacepentalene Dianion and 4,7-Disubstituted Tribenzodihydroacepentalene Derivatives: Formation, Reactions, and Structural Properties of Potential Tribenzacepentalene Precursors. Journal of the American Chemical Society, 1995, 117, 10474-10485.	13.7	59
134	Crossâ€Linked Glycerol Dendrimers and Hyperbranched Polymers as Ionophoric, Organic Nanoparticles Soluble in Water and Organic Solvents. Angewandte Chemie - International Edition, 2007, 46, 8164-8167.	13.8	59
135	Functional Nanoparticles from Dendritic Precursors: Hierarchical Assembly in Miniemulsion. Macromolecules, 2009, 42, 556-559.	4.8	59
136	Tandem Coordination, Ring-Opening, Hyperbranched Polymerization for the Synthesis of Water-Soluble Core–Shell Unimolecular Transporters. ACS Macro Letters, 2012, 1, 564-567.	4.8	59
137	Dendritic Aliphatic Polyethers as High-Loading Soluble Supports for Carbonyl Compounds and Parallel Membrane Separation Techniques. ACS Combinatorial Science, 2002, 4, 112-119.	3.3	57
138	Highly Efficient Multivalent 2D Nanosystems for Inhibition of Orthopoxvirus Particles. Advanced Healthcare Materials, 2016, 5, 2922-2930.	7.6	57
139	Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials. Angewandte Chemie - International Edition, 2017, 56, 2675-2679.	13.8	57
140	Positively Charged Nanoaggregates Based on Zwitterionic Pillar[5]arene that Combat Planktonic Bacteria and Disrupt Biofilms. Angewandte Chemie - International Edition, 2019, 58, 3645-3649.	13.8	57
141	Supramolecular Immobilization of a Perfluoro-Tagged Pd-Catalyst with Dendritic Architectures and Application in Suzuki Reactions. Advanced Synthesis and Catalysis, 2005, 347, 1389-1394.	4.3	56
142	Photoresponsive Crosslinked Hyperbranched Polyglycerols as Smart Nanocarriers for Guest Binding and Controlled Release. Small, 2009, 5, 2199-2204.	10.0	56
143	Sizeâ€Đependant Cellular Uptake of Dendritic Polyglycerol. Small, 2011, 7, 820-829.	10.0	56
144	Dendritic Polymers with a Coreâ `Multishell Architecture: A Versatile Tool for the Stabilization of Nanoparticles. Chemistry of Materials, 2008, 20, 2423-2425.	6.7	55

#	Article	IF	CITATIONS
145	Cyclo(RGD)â€Decorated Reductionâ€Responsive Nanogels Mediate Targeted Chemotherapy of Integrin Overexpressing Human Glioblastoma In Vivo. Small, 2017, 13, 1601997.	10.0	55
146	Retinoic Acid-Loaded Dendritic Polyglycerol-Conjugated Gold Nanostars for Targeted Photothermal Therapy in Breast Cancer Stem Cells. ACS Nano, 2021, 15, 15069-15084.	14.6	55
147	pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. Journal of Controlled Release, 2017, 259, 160-167.	9.9	54
148	Imine Derivatives on Au(111): Evidence for "Inverted―Thermal Isomerization. ACS Nano, 2011, 5, 2090-2097.	14.6	53
149	Aggregation Phenomena of Host and Guest upon the Loading of Dendritic Core-Multishell Nanoparticles with Solvatochromic Dyes. Macromolecules, 2012, 45, 9452-9459.	4.8	53
150	Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnology Advances, 2015, 33, 1327-1341.	11.7	53
151	High-Antifouling Polymer Brush Coatings on Nonpolar Surfaces via Adsorption-Cross-Linking Strategy. ACS Applied Materials & Interfaces, 2017, 9, 44281-44292.	8.0	53
152	Energy Transfer in Nanotubeâ€Perylene Complexes. Advanced Functional Materials, 2012, 22, 3921-3926.	14.9	52
153	<i>cis</i> – <i>trans</i> Isomerisation of Substituted Aromatic Imines: A Comparative Experimental and Theoretical Study. ChemPhysChem, 2011, 12, 2311-2321.	2.1	50
154	A bifunctional nanocarrier based on amphiphilic hyperbranched polyglycerol derivatives. Journal of Materials Chemistry B, 2013, 1, 3569.	5.8	50
155	Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. ELife, 2017, 6, .	6.0	50
156	A Waterâ€Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers. Advanced Materials, 2018, 30, 1705452.	21.0	50
157	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	21.0	50
158	Overcoming Kinetic Limitations of Electron Injection in the Dye Solar Cell via Coadsorption and FRET. ChemPhysChem, 2008, 9, 793-798.	2.1	49
159	Photoresponsive Switches at Surfaces Based on Supramolecular Functionalization with Azobenzene–Oligoglycerol Conjugates. Angewandte Chemie - International Edition, 2014, 53, 9669-9673.	13.8	49
160	pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. Journal of Controlled Release, 2019, 295, 214-222.	9.9	49
161	ZnO/Nanocarbonsâ€Modified Fibrous Scaffolds for Stem Cellâ€Based Osteogenic Differentiation. Small, 2020, 16, e2003010.	10.0	49
162	Polysulfates Block SARSâ€CoVâ€2 Uptake through Electrostatic Interactions**. Angewandte Chemie - International Edition, 2021, 60, 15870-15878.	13.8	49

#	Article	IF	CITATIONS
163	Dendritic Fluoroalcohols as Catalysts for Alkene Epoxidation with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2013, 52, 739-743.	13.8	48
164	Dendritic Polyglycerol Core-Double-Shell Architectures: Synthesis and Transport Properties. Macromolecules, 2009, 42, 5545-5550.	4.8	47
165	Functionalized graphene sheets for intracellular controlled release of therapeutic agents. Nanoscale, 2017, 9, 18931-18939.	5.6	47
166	Controlled Release of DNA From Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromolecular Bioscience, 2011, 11, 1736-1746.	4.1	46
167	Synthesis and Biological Evaluation of Radio and Dye Labeled Amino Functionalized Dendritic Polyglycerol Sulfates as Multivalent Anti-Inflammatory Compounds. Bioconjugate Chemistry, 2013, 24, 1507-1514.	3.6	46
168	Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions. Langmuir, 2019, 35, 4736-4746.	3.5	46
169	pH-Responsive Dendritic Core–Multishell Nanocarriers. Journal of Controlled Release, 2014, 185, 99-108.	9.9	45
170	Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polymer Chemistry, 2015, 6, 1350-1359.	3.9	45
171	The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 2001-2019.	6.7	45
172	Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition. Nano Letters, 2020, 20, 5367-5375.	9.1	45
173	Polyglycerol as a High-Loading Support for Boronic Acids with Application in Solution-Phase Suzuki Cross-Couplings. Journal of Organic Chemistry, 2002, 67, 9452-9455.	3.2	44
174	Highly Regioselective Synthesis of Amino-Functionalized Dendritic Polyglycerols by a One-Pot Hydroformylation/Reductive Amination Sequence. Journal of Organic Chemistry, 2005, 70, 2021-2025.	3.2	44
175	Dendritic polyamine architectures with lipophilic shells as nanocompartments for polar guest molecules: A comparative study of their transport behavior. Journal of Polymer Science Part A, 2007, 45, 2287-2303.	2.3	44
176	Polyglycerol‣upported Co―and Mnâ€salen Complexes as Efficient and Recyclable Homogeneous Catalysts for the Hydrolytic Kinetic Resolution of Terminal Epoxides and Asymmetric Olefin Epoxidation. European Journal of Organic Chemistry, 2008, 2008, 2135-2141.	2.4	44
177	Boronate Crossâ€linked ATP―and pHâ€Responsive Nanogels for Intracellular Delivery of Anticancer Drugs. Advanced Healthcare Materials, 2015, 4, 585-592.	7.6	44
178	Dendronized Multifunctional Amphiphilic Polymers as Efficient Nanocarriers for Biomedical Applications. Macromolecular Rapid Communications, 2015, 36, 254-261.	3.9	44
179	Supramolecular Copolymerization as a Strategy to Control the Stability of Selfâ€Assembled Nanofibers. Angewandte Chemie - International Edition, 2018, 57, 6843-6847.	13.8	44
180	Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions. Nanoscale, 2018, 10, 9525-9537.	5.6	44

#	Article	IF	CITATIONS
181	Dynamic Mechanicsâ€Modulated Hydrogels to Regulate the Differentiation of Stem ell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. Small, 2019, 15, e1901920.	10.0	44
182	Quantification of Multivalent Interactions between Sialic Acid and Influenza A Virus Spike Proteins by Single-Molecule Force Spectroscopy. Journal of the American Chemical Society, 2020, 142, 12181-12192.	13.7	43
183	Biocatalytic Route to Sugar-PEG-Based Polymers for Drug Delivery Applications. Biomacromolecules, 2011, 12, 3487-3498.	5.4	42
184	Synthesis and Optical Properties of Waterâ€Soluble Polyglycerolâ€Dendronized Rylene Bisimide Dyes. Chemistry - A European Journal, 2013, 19, 10911-10921.	3.3	42
185	Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared. Science Advances, 2019, 5, eaax1166.	10.3	42
186	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€2 Interactions. Small, 2021, 17, e2007091.	10.0	42
187	Responsive Emulsions for Sequential Multienzyme Cascades. Angewandte Chemie - International Edition, 2021, 60, 8410-8414.	13.8	42
188	Multivalent Presentation of Mannose on Hyperbranched Polyglycerol and their Interaction with Concanavalin A Lectin. ChemBioChem, 2011, 12, 1075-1083.	2.6	41
189	Selfâ€Strengthening Adhesive Force Promotes Cell Mechanotransduction. Advanced Materials, 2020, 32, e2006986.	21.0	41
190	Dendritic and lipid-based carriers for gene/siRNA delivery (a review). Current Opinion in Solid State and Materials Science, 2012, 16, 310-322.	11.5	40
191	Multi-stage, charge conversional, stimuli-responsive nanogels for therapeutic protein delivery. Biomaterials Science, 2015, 3, 1487-1496.	5.4	40
192	Surface Functionalization of Poly(ether imide) Membranes with Linear, Methylated Oligoglycerols for Reducing Thrombogenicity. Macromolecular Rapid Communications, 2012, 33, 1487-1492.	3.9	39
193	Nonâ€ionic Dendronized Multiamphiphilic Polymers as Nanocarriers for Biomedical Applications. Small, 2013, 9, 894-904.	10.0	39
194	Multivalent anchored and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium oxide surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 122, 684-692.	5.0	39
195	Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs. Biomacromolecules, 2018, 19, 409-416.	5.4	39
196	Graphene Oxide yclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multipleâ€Drug Resistance. Advanced Functional Materials, 2020, 30, 2000933.	14.9	39
197	In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virology Journal, 2021, 18, 182.	3.4	39
198	Enzymatically Cross-Linked Hyperbranched Polyglycerol Hydrogels as Scaffolds for Living Cells. Biomacromolecules, 2014, 15, 3881-3890.	5.4	38

#	Article	IF	CITATIONS
199	Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits. Biomacromolecules, 2015, 16, 3073-3082.	5.4	38
200	Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery. Langmuir, 2016, 32, 12453-12460.	3.5	38
201	A Nanohookâ€Equipped Bionanocatalyst for Localized Nearâ€Infraredâ€Enhanced Catalytic Bacterial Disinfection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
202	pH-Responsive dendritic core-shell architectures as amphiphilic nanocarriers for polar drugs. Journal of Drug Targeting, 2006, 14, 367-374.	4.4	37
203	Exploiting Fluorescence Lifetime Plasticity in FLIM: Target Molecule Localization in Cells and Tissues. ACS Medicinal Chemistry Letters, 2011, 2, 724-728.	2.8	37
204	Fibrous Networks with Incorporated Macrocycles: A Chiral Stimuliâ€Responsive Supramolecular Supergelator and Its Application to Biocatalysis in Organic Media. Chemistry - A European Journal, 2013, 19, 10150-10159.	3.3	37
205	Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chemical Society Reviews, 2016, 45, 6855-6887.	38.1	37
206	Bioinspired Universal Monolayer Coatings by Combining Concepts from Blood Protein Adsorption and Mussel Adhesion. ACS Applied Materials & Interfaces, 2017, 9, 6624-6633.	8.0	37
207	Green Synthesis of Hyperbranched Polyglycerol at Room Temperature. ACS Macro Letters, 2017, 6, 35-40.	4.8	37
208	Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. Journal of Materials Chemistry B, 2019, 7, 3438-3445.	5.8	37
209	Novel dendritic polyglycerol-conjugated, mesoporous silica-based targeting nanocarriers for co-delivery of doxorubicin and tariquidar to overcome multidrug resistance in breast cancer stem cells. Journal of Controlled Release, 2021, 330, 1106-1117.	9.9	37
210	Polyglycerol for Half-Life Extension of Proteins—Alternative to PECylation?. Biomacromolecules, 2021, 22, 1406-1416.	5.4	37
211	New Approaches Towards Monoamino Polyglycerol Dendrons and Dendritic Triblock Amphiphiles. European Journal of Organic Chemistry, 2008, 2008, 53-63.	2.4	36
212	Micelles with Sheddable Dendritic Polyglycerol Sulfate Shells Show Extraordinary Tumor Targetability and Chemotherapy <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2016, 8, 27530-27538.	8.0	36
213	Fluorine-free superwetting systems: construction of environmentally friendly superhydrophilic, superhydrophobic, and slippery surfaces on various substrates. Polymer Chemistry, 2016, 7, 7446-7454.	3.9	36
214	Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2201-2214.	3.3	36
215	Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus. Macromolecular Bioscience, 2017, 17, 1600499.	4.1	36
216	Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 31-37.	4.3	36

#	Article	IF	CITATIONS
217	Supramolecular nanogels fabricated via host–guest molecular recognition as penetration enhancer for dermal drug delivery. Journal of Controlled Release, 2019, 300, 64-72.	9.9	36
218	Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angewandte Chemie - International Edition, 2020, 59, 12417-12422.	13.8	36
219	Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing. Sensors and Actuators A: Physical, 2000, 86, 81-85.	4.1	35
220	Supramolecular Aggregates of Water Soluble Dendritic Polyglycerol Architectures for the Solubilization of Hydrophobic Compounds. Macromolecular Rapid Communications, 2010, 31, 1516-1520.	3.9	35
221	Electronic structure and electron dynamics at an organic molecule/metal interface: interface states of tetra- <i>tert</i> -butyl-imine/Au(111). New Journal of Physics, 2010, 12, 125022.	2.9	35
222	Skin penetration enhancement of core–multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. International Journal of Pharmaceutics, 2011, 416, 223-8.	5.2	35
223	Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins. Soft Matter, 2015, 11, 972-980.	2.7	35
224	Development of biodegradable hyperbranched core-multishell nanocarriers for efficient topical drug delivery. Journal of Controlled Release, 2016, 242, 42-49.	9.9	35
225	Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomaterials Science, 2017, 5, 2328-2336.	5.4	35
226	Fluorescent Polymer—Singleâ€Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. Small, 2018, 14, e1800796.	10.0	35
227	Biospecific Monolayer Coating for Multivalent Capture of Circulating Tumor Cells with High Sensitivity. Advanced Functional Materials, 2019, 29, 1808961.	14.9	35
228	Functional Surfactants for Carbon Nanotubes: Effects of Design. Journal of Physical Chemistry C, 2013, 117, 1157-1162.	3.1	34
229	Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles. Chemical Communications, 2015, 51, 8648-8651.	4.1	34
230	Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules, 2017, 22, 17.	3.8	34
231	Hyperbranched Polyglycerol Loaded with (Zinc-)Porphyrins: Photosensitizer Release Under Reductive and Acidic Conditions for Improved Photodynamic Therapy. Biomacromolecules, 2018, 19, 222-238.	5.4	34
232	Polymersome Formation by Amphiphilic Polyglycerol- <i>b</i> -polydisulfide- <i>b</i> -polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules, 2020, 21, 3353-3363.	5.4	34
233	Cellular Copper Import by Nanocarrier Systems, Intracellular Availability, and Effects on Amyloid \hat{l}^2 Peptide Secretion. Biochemistry, 2009, 48, 4273-4284.	2.5	33
234	Synthesis and properties of fluorescent dyes conjugated to hyperbranched polyglycerols. New Journal of Chemistry, 2012, 36, 419-427.	2.8	33

#	Article	IF	CITATIONS
235	Nanodynamics of Dendritic Core–Multishell Nanocarriers. Langmuir, 2014, 30, 1686-1695.	3.5	33
236	Force Spectroscopy Shows Dynamic Binding of Influenza Hemagglutinin and Neuraminidase to Sialic Acid. Biophysical Journal, 2019, 116, 1037-1048.	0.5	33
237	Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension. Chemical Physics Letters, 2010, 493, 147-150.	2.6	32
238	Polyglycerol coatings of glass vials for protein resistance. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 756-764.	4.3	32
239	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	5.8	32
240	Shell Cleavable Dendritic Polyglycerol Sulfates Show High Antiâ€Inflammatory Properties by Inhibiting Lâ€Selectin Binding and Complement Activation. Advanced Healthcare Materials, 2015, 4, 2154-2162.	7.6	32
241	Synthesis and Biodistribution Studies of ³ H- and ⁶⁴ Cu-Labeled Dendritic Polyglycerol Sulfate. Bioconjugate Chemistry, 2015, 26, 906-918.	3.6	32
242	Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. Nanoscale, 2015, 7, 3923-3932.	5.6	32
243	Intradermal drug delivery by nanogel-peptide conjugates; specific and efficient transport of temoporfin. Journal of Controlled Release, 2016, 242, 35-41.	9.9	32
244	Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing. Journal of Controlled Release, 2016, 242, 50-63.	9.9	32
245	Charged Dendrimers Revisited: Effective Charge and Surface Potential of Dendritic Polyglycerol Sulfate. Macromolecules, 2017, 50, 4759-4769.	4.8	32
246	Mannoseâ€Functionalized Hyperbranched Polyglycerol Loaded with Zinc Porphyrin: Investigation of the Multivalency Effect in Antibacterial Photodynamic Therapy. Chemistry - A European Journal, 2017, 23, 3918-3930.	3.3	32
247	Polyglycerol-opioid conjugate produces analgesia devoid of side effects. ELife, 2017, 6, .	6.0	32
248	Thermally Responsive Microfibers Mediated Stem Cell Fate via Reversibly Dynamic Mechanical Stimulation. Advanced Functional Materials, 2018, 28, 1804773.	14.9	32
249	Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. Journal of Chemical Physics, 2018, 149, 163324.	3.0	32
250	The Long Elusive Acepentalene—Experimental and Theoretical Evidence for its Existence. Angewandte Chemie International Edition in English, 1996, 35, 1317-1319.	4.4	31
251	In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering. Acta Biomaterialia, 2015, 25, 43-55.	8.3	31
252	Core-multishell nanocarriers: Transport and release of dexamethasone probed by soft X-ray spectromicroscopy. Journal of Controlled Release, 2016, 242, 64-70.	9.9	31

#	Article	IF	CITATIONS
253	Synthesis of poly(lactide- <i>co</i> -glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. Nanoscale, 2018, 10, 16848-16856.	5.6	31
254	A new approach to dendritic supported NIXANTPHOS-based hydroformylation catalysts. Journal of Molecular Catalysis A, 2006, 257, 78-88.	4.8	30
255	Dendritic polyglycerolamine as a functional antifouling coating of gold surfaces. Journal of Materials Chemistry, 2012, 22, 19488.	6.7	30
256	Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 625-634.	4.3	30
257	Interactions of Fullereneâ€Polyglycerol Sulfates at Viral and Cellular Interfaces. Small, 2018, 14, e1800189.	10.0	30
258	Supramolecular Double Helices from Small C ₃ -Symmetrical Molecules Aggregated in Water. Journal of the American Chemical Society, 2020, 142, 17644-17652.	13.7	30
259	Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
260	Continuous Application of Polyglycerolâ€Supported Salen in a Membrane Reactor: Asymmetric Epoxidation of 6 yanoâ€2,2â€dimethylchromene. Advanced Synthesis and Catalysis, 2008, 350, 919-925.	4.3	29
261	New Polymer‣upported Catalysts for the Asymmetric Transfer Hydrogenation of Acetophenone in Water – Kinetic and Mechanistic Investigations. Advanced Synthesis and Catalysis, 2011, 353, 1335-1344.	4.3	29
262	Synthesis of multiarm star copolymers based on polyglycerol cores with polylactide arms and their application as nanocarriers. RSC Advances, 2015, 5, 14958-14966.	3.6	29
263	Injectable hydrogels for treatment of osteoarthritis – A rheological study. Colloids and Surfaces B: Biointerfaces, 2017, 159, 477-483.	5.0	29
264	Conformational Analysis of Bivalent Estrogen Receptor Ligands: From Intramolecular to Intermolecular Binding. ChemBioChem, 2011, 12, 2587-2598.	2.6	28
265	Synthesis and Validation of Functional Nanogels as pH‣ensors in the Hair Follicle. Macromolecular Bioscience, 2017, 17, 1600505.	4.1	28
266	Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings. Langmuir, 2017, 33, 9508-9520.	3.5	28
267	Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chemical Neuroscience, 2018, 9, 260-271.	3.5	28
268	A multivalent polyanion-dispersed carbon nanotube toward highly bioactive nanostructured fibrous stem cell scaffolds. Applied Materials Today, 2019, 16, 518-528.	4.3	28
269	Tumor Microenvironmentâ€Activatable Nanoenzymes for Mechanical Remodeling of Extracellular Matrix and Enhanced Tumor Chemotherapy. Advanced Functional Materials, 2021, 31, 2007544. 	14.9	28
270	Electrolysis as an Efficient Key Step in the Homogeneous Polymer-Supported Synthesis ofN-Substituted Pyrroles. Organic Letters, 2006, 8, 403-406.	4.6	27

#	Article	IF	CITATIONS
271	Chirally Modified Platinum Nanoparticles Stabilized by Dendritic Coreâ€Multishell Architectures for the Asymmetric Hydrogenation of Ethyl Pyruvate. Advanced Synthesis and Catalysis, 2010, 352, 1503-1511.	4.3	27
272	Immobilization of a Modified Tethered Rhodium(III)â€ <i>p</i> â€Toluenesulfonylâ€1,2â€diphenylethylenediamine Catalyst on Soluble and Solid Polymeric Supports and Successful Application to Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis and Catalysis, 2010, 352, 2497-2506.	4.3	27
273	Controlled reversible debundling of single-walled carbon nanotubes by photo-switchable dendritic surfactants. Nanoscale, 2012, 4, 3029.	5.6	27
274	Polyglycerolâ€Derived Amphiphiles for the Solubilization of Singleâ€Walled Carbon Nanotubes in Water: A Structure–Property Study. ChemPhysChem, 2012, 13, 203-211.	2.1	27
275	Systematic adjustment of charge densities and size of polyglycerol amines reduces cytotoxic effects and enhances cellular uptake. Biomaterials Science, 2015, 3, 1459-1465.	5.4	27
276	Structureâ€Transport Relationship of Dendritic Coreâ€Shell Nanocarriers for Polar Dyes. Macromolecular Rapid Communications, 2008, 29, 171-174.	3.9	26
277	Intramolecular Acceleration of Asymmetric Epoxide Ringâ€Opening by Dendritic Polyglycerol Salen–Cr ^{III} Complexes. European Journal of Organic Chemistry, 2009, 2009, 3272-3278.	2.4	26
278	The Effect of Polyglycerol Sulfate Branching On Inflammatory Processes. Macromolecular Bioscience, 2014, 14, 643-654.	4.1	26
279	Phosphonic acid anchored ruthenium complexes for ZnO-based dye-sensitized solar cells. Dyes and Pigments, 2014, 104, 24-33.	3.7	26
280	Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility. Journal of Materials Chemistry B, 2014, 2, 3626-3635.	5.8	26
281	Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements. Molecules, 2016, 21, 22.	3.8	26
282	A Highly Photostable Hyperbranched Polyglycerolâ€Based NIR Fluorescence Nanoplatform for Mitochondria‧pecific Cell Imaging. Advanced Healthcare Materials, 2016, 5, 2214-2226.	7.6	26
283	Mimicking of Chondrocyte Microenvironment Using In Situ Forming Dendritic Polyglycerol Sulfateâ€Based Synthetic Polyanionic Hydrogels. Macromolecular Bioscience, 2016, 16, 580-590.	4.1	26
284	Fabrication of nanostructures through self-assembly of non-ionic amphiphiles for biomedical applications. RSC Advances, 2017, 7, 22121-22132.	3.6	26
285	General method for the quantification of drug loading and release kinetics of nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 131-137.	4.3	26
286	One-pot and gram-scale synthesis of biodegradable polyglycerols under ambient conditions: nanocarriers for intradermal drug delivery. Polymer Chemistry, 2017, 8, 7375-7383.	3.9	26
287	Stratum corneum targeting by dendritic core-multishell-nanocarriers in a mouse model of psoriasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 317-327.	3.3	26
288	Polystyrene-graft-Polyglycerol Resins:Â A New Type of High-Loading Hybrid Support for Organic Synthesis. ACS Combinatorial Science, 2006, 8, 350-354.	3.3	25

#	Article	IF	CITATIONS
289	Self-assembly, photoresponsive behavior and transport potential of azobenzene grafted dendronized polymeric amphiphiles. RSC Advances, 2015, 5, 48301-48310.	3.6	25
290	Controlled self-assembly of stomatosomes by use of single-component fluorinated dendritic amphiphiles. Soft Matter, 2018, 14, 5256-5269.	2.7	25
291	Dendritic Polyglycerolâ€Derived Nanoâ€Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromolecular Bioscience, 2019, 19, e1900073.	4.1	25
292	Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release, 2019, 300, 13-21.	9.9	25
293	Topologyâ€Matching Design of an Influenzaâ€Neutralizing Spiky Nanoparticleâ€Based Inhibitor with a Dual Mode of Action. Angewandte Chemie - International Edition, 2020, 59, 15532-15536.	13.8	25
294	Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. Science Advances, 2021, 7, .	10.3	25
295	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38â€Targeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	21.0	25
296	Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics, 2020, 10, 6322-6336.	10.0	25
297	Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents. Nanoscale, 2014, 6, 9646-9654.	5.6	24
298	Enhancement of fluorescent properties of near-infrared dyes using clickable oligoglycerol dendrons. Organic and Biomolecular Chemistry, 2015, 13, 4727-4732.	2.8	24
299	Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers. International Journal of Pharmaceutics, 2016, 501, 271-277.	5.2	24
300	Hydrolytically degradable, dendritic polyglycerol sulfate based injectable hydrogels using strain promoted azide–alkyne cycloaddition reaction. Polymer Chemistry, 2016, 7, 375-383.	3.9	24
301	Active Antibacterial and Antifouling Surface Coating via a Facile One-Step Enzymatic Cross-Linking. Biomacromolecules, 2017, 18, 210-216.	5.4	24
302	Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 102-110.	4.3	24
303	Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Nanotoxicology, 2018, 12, 90-103.	3.0	24
304	Biodegradable Polyglycerol Sulfates Exhibit Promising Features for Anti-inflammatory Applications. Biomacromolecules, 2018, 19, 4524-4533.	5.4	24
305	Double trouble for viruses: a hydrogel nanocomposite catches the influenza virus while shrinking and changing color. Chemical Communications, 2020, 56, 3547-3550.	4.1	24
306	Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules, 2021, 22, 1545-1554.	5.4	24

#	Article	IF	CITATIONS
307	Non-ionic dendritic glycerol-based amphiphiles: Novel excipients for the solubilization of poorly water-soluble anticancer drug Sagopilone. European Journal of Pharmaceutical Sciences, 2010, 40, 48-55.	4.0	23
308	Biocatalytic Approach for the Synthesis of Glycerolâ€Based Macroamphiphiles and their Selfâ€Assembly to Micellar Nanotransporters. Macromolecular Chemistry and Physics, 2010, 211, 239-244.	2.2	23
309	Anionic Ring-Opening Polymerization Simulations for Hyperbranched Polyglycerols with Defined Molecular Weights. Macromolecules, 2013, 46, 8458-8466.	4.8	23
310	Influence of dendritic polyglycerol sulfates on knee osteoarthritis: an experimental study in the rat osteoarthritis model. BMC Musculoskeletal Disorders, 2015, 16, 387.	1.9	23
311	Compartmentalized Aqueous–Organic Emulsion for Efficient Biocatalysis. Chemistry - A European Journal, 2018, 24, 10966-10970.	3.3	23
312	Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses, 2021, 13, 2030.	3.3	23
313	Dendritic polyglycerol as a high-loading support for parallel multistep synthesis of GABA lactam analogues. Tetrahedron, 2004, 60, 8711-8720.	1.9	22
314	Polymers in Biomedicine and Electronics. Macromolecular Rapid Communications, 2010, 31, 1487-1491.	3.9	22
315	Glycerol based polyether-nanogels with tunable properties via acid-catalyzed epoxide-opening in miniemulsion. Reactive and Functional Polymers, 2011, 71, 356-361.	4.1	22
316	Chemoselective Staudinger-phosphite reaction of symmetrical glycosyl-phosphites with azido-peptides and polygycerols. Organic and Biomolecular Chemistry, 2012, 10, 6211.	2.8	22
317	Nonsteroidal Bivalent Estrogen Ligands: An Application of the Bivalent Concept to the Estrogen Receptor. ACS Chemical Biology, 2013, 8, 707-715.	3.4	22
318	Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 94-101.	4.3	22
319	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie, 2018, 130, 11368-11372.	2.0	22
320	Synthesis of Linear Polyamines with Different Amine Spacings and their Ability to Form dsDNA/siRNA Complexes Suitable for Transfection. Macromolecular Bioscience, 2010, 10, 1073-1083.	4.1	21
321	Selectivity in Bone Targeting with Multivalent Dendritic Polyanion Dye Conjugates. Advanced Healthcare Materials, 2014, 3, 375-385.	7.6	21
322	Dendritic amphiphiles as additives for honeycomb-like patterned surfaces by breath figures: Role of the molecular characteristics on the pore morphology. Journal of Colloid and Interface Science, 2015, 440, 263-271.	9.4	21
323	Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials. Angewandte Chemie, 2017, 129, 2719-2723.	2.0	21
324	Drug distribution in nanostructured lipid particles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 19-23.	4.3	21

#	Article	IF	CITATIONS
325	Interaction of Human Mesenchymal Stem Cells with Soft Nanocomposite Hydrogels Based on Polyethylene Glycol and Dendritic Polyglycerol. Advanced Functional Materials, 2020, 30, 1905200.	14.9	21
326	A new azobenzene-based design strategy for detergents in membrane protein research. Chemical Science, 2020, 11, 3538-3546.	7.4	21
327	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	13.7	21
328	Molecular Insights into Site-Specific Interferon- $\hat{l}\pm 2a$ Bioconjugates Originated from PEG, LPG, and PETOx. Biomacromolecules, 2021, 22, 4521-4534.	5.4	21
329	Multivalency as a chemical organization and action principle. Beilstein Journal of Organic Chemistry, 2015, 11, 848-849.	2.2	20
330	Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin. Nanoscale Research Letters, 2017, 12, 64.	5.7	20
331	Surface charge and particle size determine the metabolic fate of dendritic polyglycerols. Nanoscale, 2017, 9, 8723-8739.	5.6	20
332	Highly sensitive detection of antibodies in a soft bioactive three-dimensional bioorthogonal hydrogel. Journal of Materials Chemistry B, 2019, 7, 3220-3231.	5.8	20
333	One-Pot Synthesis of Poly(glycerol- <i>co</i> -succinic acid) Nanogels for Dermal Delivery. Biomacromolecules, 2019, 20, 1867-1875.	5.4	20
334	Strong Inhibition of Cholera Toxin B Subunit by Affordable, Polymer-Based Multivalent Inhibitors. Bioconjugate Chemistry, 2019, 30, 785-792.	3.6	20
335	Development of enzymatically cleavable doxorubicin conjugates with polyglycerol. Journal of Controlled Release, 2008, 132, e54-e55.	9.9	19
336	Synthesis and transport properties of new dendritic core–shell architectures based on hyperbranched polyglycerol with biphenyl-PEG shells. New Journal of Chemistry, 2012, 36, 371-379.	2.8	19
337	Investigations of Host–Guest Interactions with Shape-Persistent Nonionic Dendritic Micelles. Journal of Physical Chemistry C, 2013, 117, 12307-12317.	3.1	19
338	Synthesis of amphiphilic dendronized polymers to study their selfâ€essembly and transport behavior. Polymers for Advanced Technologies, 2014, 25, 1208-1215.	3.2	19
339	Dendronized Cryptophanes as Water-Soluble Xenon Hosts for ¹²⁹ Xe Magnetic Resonance Imaging. Organic Letters, 2014, 16, 4436-4439.	4.6	19
340	Structure related transport properties and cellular uptake of hyperbranched polyglycerol sulfates with hydrophobic cores. Polymer Chemistry, 2014, 5, 5020-5028.	3.9	19
341	Amino Acid-Functionalized Dendritic Polyglycerol for Safe and Effective siRNA Delivery. Biomacromolecules, 2015, 16, 3869-3877.	5.4	19
342	Bioorthogonal in Situ Hydrogels Based on Polyether Polyols for New Biosensor Materials with High Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 11382-11390.	8.0	19

#	Article	IF	CITATIONS
343	Development of Antifouling and Bactericidal Coatings for Platelet Storage Bags Using Dopamine Chemistry. Advanced Healthcare Materials, 2018, 7, 1700839.	7.6	19
344	Dendritic Polyglycerol Sulfate for Therapy and Diagnostics. Polymers, 2018, 10, 595.	4.5	19
345	Thermodynamics of the Binding of Lysozyme to a Dendritic Polyelectrolyte: Electrostatics Versus Hydration. ACS Omega, 2018, 3, 9086-9095.	3.5	19
346	Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. Journal of Controlled Release, 2019, 299, 138-148.	9.9	19
347	Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization. Small, 2019, 15, e1805430.	10.0	19
348	Living whole-cell catalysis in compartmentalized emulsion. Bioresource Technology, 2020, 295, 122221.	9.6	19
349	Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging. Small, 2020, 16, e1905013.	10.0	19
350	An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. Journal of Controlled Release, 2021, 340, 331-341.	9.9	19
351	Effect of the shell on the transport properties of poly(glycerol) and Poly(ethylene imine) nanoparticles. Journal of Nanoparticle Research, 2007, 9, 1057-1065.	1.9	18
352	Triglycerol-based hyperbranched polyesters with an amphiphilic branched shell as novel biodegradable drug delivery systems. Polymer Chemistry, 2016, 7, 887-898.	3.9	18
353	A Simple and Efficient Process for Large Scale Glycerol Oligomerization by Microwave Irradiation. Catalysts, 2017, 7, 123.	3.5	18
354	Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression. Nano-Micro Letters, 2021, 13, 147.	27.0	18
355	In vivo tumor imaging using a novel RNAi-based detection mechanism. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 393-398.	3.3	17
356	Dendritic polyglycerol cyclodextrin amphiphiles and their self-assembled architectures to transport hydrophobic guest molecules. RSC Advances, 2014, 4, 61656-61659.	3.6	17
357	Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions. Journal of Materials Chemistry B, 2014, 2, 3915-3918.	5.8	17
358	Dendritic Polyglycerol–Poly(ethylene glycol)-Based Polymer Networks for Biosensing Application. ACS Applied Materials & Interfaces, 2014, 6, 8937-8941.	8.0	17
359	Effects of dendritic polyglycerol sulfate on articular chondrocytes. Inflammation Research, 2015, 64, 917-928.	4.0	17
360	Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties. ACS Applied Bio Materials, 2019, 2, 5749-5759.	4.6	17

#	Article	IF	CITATIONS
361	Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy. Pharmaceutics, 2020, 12, 400.	4.5	17
362	Self-degrading graphene sheets for tumor therapy. Nanoscale, 2020, 12, 14222-14229.	5.6	17
363	Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms. Advanced Materials Interfaces, 2021, 8, 2100285.	3.7	17
364	Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)–SS-poly(ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting. Biomacromolecules, 2021, 22, 2625-2640.	5.4	17
365	Dendritic Polyglycerolâ€Conjugated Gold Nanostars for Metabolism Inhibition and Targeted Photothermal Therapy in Breast Cancer Stem Cells. Advanced Healthcare Materials, 2022, 11, e2102272.	7.6	17
366	Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers, 2022, 14, 2684.	4.5	17
367	NEW POLYETHYLENE GLYCOL POLYMERS AS KETAL PROTECTING GROUPS – A POLYMER SUPPORTED APPROACH TO SYMMETRICALLY SUBSTITUTED SPIROKETALS. Synthetic Communications, 2001, 31, 2965-2977.	2.1	16
368	Novel chemoenzymatic methodology for the regioselective glycine loading on polyhydroxy compounds. Organic and Biomolecular Chemistry, 2010, 8, 2228.	2.8	16
369	A Crucial Role of Lâ€ S electin in C Protein–Induced Experimental Polymyositis in Mice. Arthritis and Rheumatology, 2014, 66, 1864-1871.	5.6	16
370	Tolerogenic Modulation of the Immune Response by Oligoglycerol– and Polyglycerol–Peptide Conjugates. Bioconjugate Chemistry, 2015, 26, 669-679.	3.6	16
371	Aggregation Behavior of Nonâ€ionic Twinned Amphiphiles and Their Application as Biomedical Nanocarriers. Chemistry - an Asian Journal, 2017, 12, 1796-1806.	3.3	16
372	Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus. Materials Science and Engineering C, 2020, 116, 111109.	7.3	16
373	Dendritic Core–Multishell Polymer Templates for the Synthesis of Pt Nanoparticle‣oaded Porous Silica and their Application as Catalysts for the Enantioselective Hydrogenation of Ethyl Pyruvate. ChemCatChem, 2010, 2, 807-811.	3.7	15
374	Quasi-Homogeneous Hydrogenation with Platinum and Palladium Nanoparticles Stabilized by Dendritic Core–Multishell Architectures. Langmuir, 2011, 27, 6511-6518.	3.5	15
375	Supramolecular behavior of fluorous polyglycerol dendrons and polyglycerol dendrimers with perfluorinated shells in water. New Journal of Chemistry, 2012, 36, 402-406.	2.8	15
376	In Situ Hydrolysis of Imine Derivatives on Au(111) for the Formation of Aromatic Mixed Self-Assembled Monolayers: Multitechnique Analysis of This Tunable Surface Modification. Langmuir, 2012, 28, 358-366.	3.5	15
377	Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations. Beilstein Journal of Organic Chemistry, 2015, 11, 730-738.	2.2	15
378	Carbon-based cores with polyglycerol shells – the importance of core flexibility for encapsulation of hydrophobic guests. Journal of Materials Chemistry B, 2015, 3, 719-722.	5.8	15

#	Article	IF	CITATIONS
379	Introducing Chirality into Nonionic Dendritic Amphiphiles and Studying Their Supramolecular Assembly. Chemistry - A European Journal, 2016, 22, 5629-5636.	3.3	15
380	Crosslinked Redoxâ€Responsive Micelles Based on Lipoic Acidâ€Derived Amphiphiles for Enhanced siRNA Delivery. Macromolecular Bioscience, 2016, 16, 811-823.	4.1	15
381	Exploring the Potential of Dendritic Oligoglycerol Detergents for Protein Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 174-180.	2.8	15
382	Mucinâ€Inspired, High Molecular Weight Virus Binding Inhibitors Show Biphasic Binding Behavior to Influenza A Viruses. Small, 2020, 16, e2004635.	10.0	15
383	Wellâ€Ðefined Nanostructured Biointerfaces: Strengthened Cellular Interaction for Circulating Tumor Cells Isolation. Advanced Healthcare Materials, 2021, 10, e2002202.	7.6	15
384	Thermochemical and X-ray Crystallographic Investigations of Some (CH)10 Hydrocarbons: Basketene, Nenitzescu's Hydrocarbon, and Snoutene. European Journal of Organic Chemistry, 2002, 2002, 2280.	2.4	14
385	Broadband Dielectric Spectroscopy Studies of Hyperbranched Polyglycerols. Macromolecular Chemistry and Physics, 2006, 207, 970-977.	2.2	14
386	Homogeneous Stabilization of Pt Nanoparticles in Dendritic Core–Multishell Architectures: Application in Catalytic Hydrogenation Reactions and Recycling. ChemCatChem, 2010, 2, 863-870.	3.7	14
387	pHâ€Triggered Selfâ€Assembly of Zwitterionic Polyglycerol Dendrons into Discrete and Highly Stable Supramolecular Dendrimers in Water. Chemistry - A European Journal, 2010, 16, 14242-14246.	3.3	14
388	Synthesis and Evaluation of Nonsulfated and Sulfated Glycopolymers as L- and P-selectin Inhibitors. Journal of Carbohydrate Chemistry, 2011, 30, 347-360.	1.1	14
389	Increased cutaneous absorption reflects impaired barrier function of reconstructed skin models mimicking keratinisation disorders. Experimental Dermatology, 2014, 23, 286-288.	2.9	14
390	Progress in the direct structural characterization of fibrous amphiphilic supramolecular assemblies in solution by transmission electron microscopic techniques. Advances in Colloid and Interface Science, 2014, 208, 279-292.	14.7	14
391	Functionalized Polyglycerol Amine Nanogels as Nanocarriers for DNA. Macromolecular Bioscience, 2014, 14, 1215-1221.	4.1	14
392	Polyglycerol based coatings to reduce non-specific protein adsorption in sample vials and on SPR sensors. Analytica Chimica Acta, 2015, 867, 47-55.	5.4	14
393	Structure–activity relationship study of dendritic polyglycerolamines for efficient siRNA transfection. RSC Advances, 2015, 5, 78760-78770.	3.6	14
394	Synthesis, Photophysical, and Biological Evaluation of Sulfated Polyglycerol Dendronized Perylenebisimides (PBIs)—A Promising Platform for Anti-Inflammatory Theranostic Agents?. Bioconjugate Chemistry, 2016, 27, 727-736.	3.6	14
395	Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and their Bioconjugates. Chemistry - A European Journal, 2017, 23, 4849-4862.	3.3	14
396	Photoregulating Antifouling and Bioadhesion Functional Coating Surface Based on Spiropyran. Chemistry - A European Journal, 2018, 24, 7742-7748.	3.3	14

#	Article	IF	CITATIONS
397	Exploring Rigid and Flexible Core Trivalent Sialosides for Influenza Virus Inhibition. Chemistry - A European Journal, 2018, 24, 19373-19385.	3.3	14
398	Dynamic Protein Adsorption onto Dendritic Polyglycerol Sulfate Self-Assembled Monolayers. Langmuir, 2018, 34, 10302-10308.	3.5	14
399	Dendrimer-based micelles as cyto-compatible nanocarriers. New Journal of Chemistry, 2019, 43, 11984-11993.	2.8	14
400	Facile Formation of Dihydroacepentalenediide fromcentro-Substituted Tribenzotriquinacenes with C-C Bond Cleavage. Synlett, 1994, 1994, 340-342.	1.8	13
401	Syntheses, Structures, and Reactions of Highly Strained Dihydro- and Tetrahydroacepentalene Derivatives. Chemistry - A European Journal, 1998, 4, 1192-1200.	3.3	13
402	A Novel Green Template for the Synthesis of Mesoporous Silica. Chemistry - A European Journal, 2008, 14, 3311-3315.	3.3	13
403	Estimating Kinetic Parameters for the Spontaneous Polymerization of Glycidol at Elevated Temperatures. Macromolecular Theory and Simulations, 2012, 21, 470-481.	1.4	13
404	Tissue and cellular localization of nanoparticles using 35S labeling and light microscopic autoradiography. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 465-468.	3.3	13
405	Synthesis and Application of N-Heterocyclic Carbene–Palladium Ligands with Glycerol Dendrons for the Suzuki–Miyaura Cross-Coupling in Water. Synlett, 2014, 25, 2161-2165.	1.8	13
406	Copper Transport Mediated by Nanocarrier Systems in a Blood–Brain Barrier In Vitro Model. Biomacromolecules, 2014, 15, 1910-1919.	5.4	13
407	Glycerol-Based Contrast Agents: A Novel Series of Dendronized Pentamethine Dyes. Bioconjugate Chemistry, 2015, 26, 773-781.	3.6	13
408	Polyglycerolâ€Based Copper Chelators for the Transport and Release of Copper Ions in Biological Environments. Macromolecular Bioscience, 2016, 16, 412-419.	4.1	13
409	A toolbox approach for multivalent presentation of ligand–receptor recognition on a supramolecular scaffold. Journal of Materials Chemistry B, 2018, 6, 4216-4222.	5.8	13
410	Photocatalytic Quantum Dotâ€Armed Bacteriophage for Combating Drugâ€Resistant Bacterial Infection. Advanced Science, 2022, 9, e2105668.	11.2	13
411	Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures. Organic and Biomolecular Chemistry, 2012, 10, 8403.	2.8	12
412	Receptor Mediated Cellular Uptake of Low Molecular Weight Dendritic Polyglycerols. Journal of Biomedical Nanotechnology, 2014, 10, 92-99.	1.1	12
413	Adsorption mechanism and valency of catechol-functionalized hyperbranched polyglycerols. Beilstein Journal of Organic Chemistry, 2015, 11, 828-836.	2.2	12
414	Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW. Beilstein Journal of Organic Chemistry, 2015, 11, 701-706.	2.2	12

#	Article	IF	CITATIONS
415	Responsive Contrast Agents: Synthesis and Characterization of a Tunable Series of pH-Sensitive Near-Infrared Pentamethines. ACS Omega, 2016, 1, 808-817.	3.5	12
416	Perfluoroalkylated linear polyglycerols and their supramolecular assemblies in aqueous solution. Polymer Chemistry, 2016, 7, 2222-2229.	3.9	12
417	Noncovalent Stable Functionalization Makes Carbon Nanotubes Hydrophilic and Biocompatible. Journal of Physical Chemistry C, 2017, 121, 18887-18891.	3.1	12
418	Synthesis of pHâ€Cleavable dPGâ€Amines for Gene Delivery Application. Macromolecular Bioscience, 2017, 17, 1600190.	4.1	12
419	Universal, Surfactantâ€Free Preparation of Hydrogel Beads on Superamphiphobic and Slippery Surfaces. Advanced Materials Interfaces, 2018, 5, 1701536.	3.7	12
420	Supramolecular Copolymerization as a Strategy to Control the Stability of Selfâ€Assembled Nanofibers. Angewandte Chemie, 2018, 130, 6959-6963.	2.0	12
421	Sulfated Dendritic Polyglycerol Is a Potent Complement Inhibitor. Biomacromolecules, 2019, 20, 3809-3818.	5.4	12
422	Stimuli-responsive non-ionic Gemini amphiphiles for drug delivery applications. Polymer Chemistry, 2020, 11, 6772-6782.	3.9	12
423	Fabrication of oligoâ€glycerol based hydrolase responsive amphiphilic nanocarriers. Polymers for Advanced Technologies, 2020, 31, 1208-1217.	3.2	12
424	Dendritic Oligoglycerol Regioisomer Mixtures and Their Utility for Membrane Protein Research. Chemistry - A European Journal, 2021, 27, 2537-2542.	3.3	12
425	Particle Diffusivity and Free-Energy Profiles in Hydrogels from Time-Resolved Penetration Data. Biophysical Journal, 2021, 120, 463-475.	0.5	12
426	Oxidation-Sensitive Core–Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomaterials Science and Engineering, 2021, 7, 2485-2495.	5.2	12
427	One-pot gram-scale synthesis of virucidal heparin-mimicking polymers as HSV-1 inhibitors. Chemical Communications, 2021, 57, 11948-11951.	4.1	12
428	Multivalent non-covalent interactions lead to strongest polymer adhesion. Nanoscale, 2022, 14, 3768-3776.	5.6	12
429	Cetuximab–Polymersome–Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules, 2022, 23, 100-111.	5.4	12
430	News about acepentalene, cyclopentadienyl cations and other elusive aromatic and antiaromatic compounds. Pure and Applied Chemistry, 1999, 71, 253-264.	1.9	11
431	PMMA Gradient Materials and in situ Nanocoating via Self-Assembly of Semifluorinated Hyperbranched Amphiphiles. Macromolecular Chemistry and Physics, 2005, 206, 135-141.	2.2	11
432	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	5.4	11

#	Article	IF	CITATIONS
433	The multi-domain nanoparticle structure of a universal core-multi-shell nanocarrier. Polymer, 2014, 55, 6735-6742.	3.8	11
434	Temperature and environment dependent dynamic properties of a dendritic polyglycerol sulfate. Polymers for Advanced Technologies, 2014, 25, 1329-1336.	3.2	11
435	Versatile control over size and spacing of small mesopores in metal oxide films and catalytic coatings via templating with hyperbranched core–multishell polymers. Journal of Materials Chemistry A, 2014, 2, 13075-13082.	10.3	11
436	Peptide–polymer ligands for a tandem WW-domain, an adaptive multivalent protein–protein interaction: lessons on the thermodynamic fitness of flexible ligands. Beilstein Journal of Organic Chemistry, 2015, 11, 837-847.	2.2	11
437	Encapsulation and cellular internalization of cyanine dye using amphiphilic dendronized polymers. European Polymer Journal, 2015, 69, 416-428.	5.4	11
438	Fast and easily applicable glycerol-based spray coating. Progress in Organic Coatings, 2015, 87, 146-154.	3.9	11
439	Functionalization of fullerene at room temperature: toward new carbon vectors with improved physicochemical properties. RSC Advances, 2016, 6, 112771-112775.	3.6	11
440	A toolset of functionalized porphyrins with different linker strategies for application in bioconjugation. Organic and Biomolecular Chemistry, 2016, 14, 9114-9132.	2.8	11
441	Dendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage. Journal of Materials Chemistry B, 2017, 5, 4754-4767.	5.8	11
442	Biodegradable Core–Multishell Nanocarriers: Influence of Inner Shell Structure on the Encapsulation Behavior of Dexamethasone and Tacrolimus. Polymers, 2017, 9, 316.	4.5	11
443	Characterization of hyperbranched coreâ€multishell nanocarriers as an innovative drug delivery system for the application at the oral mucosa. Journal of Periodontal Research, 2018, 53, 57-65.	2.7	11
444	Synthesis of non-ionic bolaamphiphiles and study of their self-assembly and transport behaviour for drug delivery applications. RSC Advances, 2018, 8, 31777-31782.	3.6	11
445	Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin. International Journal of Molecular Sciences, 2018, 19, 3521.	4.1	11
446	Dendritic polyglycerols are modulators of microglia-astrocyte crosstalk. Future Neurology, 2019, 14, FNL31.	0.5	11
447	Systematic Screening of Different Polyglycerinâ€Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation. Macromolecular Rapid Communications, 2020, 41, e1900510.	3.9	11
448	Topologyâ€Matching Design of an Influenzaâ€Neutralizing Spiky Nanoparticleâ€Based Inhibitor with a Dual Mode of Action. Angewandte Chemie, 2020, 132, 15662-15666.	2.0	11
449	Multivalent Polyanionic 2D Nanosheets Functionalized Nanofibrous Stem Cellâ€based Neural Scaffolds. Advanced Functional Materials, 2021, 31, 2010145.	14.9	11
450	Automated Solventâ€Free Polymerization of Hyperbranched Polyglycerol with Tailored Molecular Weight by Online Torque Detection. Macromolecular Materials and Engineering, 2021, 306, 2000688.	3.6	11

#	Article	IF	CITATIONS
451	Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. Journal of Medicinal Chemistry, 2021, 64, 12774-12789.	6.4	11
452	Anionic Dendritic Polyglycerol for Protein Purification and Delipidation. ACS Applied Polymer Materials, 2021, 3, 5903-5911.	4.4	11
453	MIF does only marginally enhance the pro-regenerative capacities of DFO in a mouse-osteotomy-model of compromised bone healing conditions. Bone, 2022, 154, 116247.	2.9	11
454	Unexpected Pd-Catalysed Substitution on the Triquinanedione System - An Approach to centro-Substituted Triquinanes. Synlett, 1996, 1996, 542-544.	1.8	10
455	HighlyExo-Selective Epoxidation and Hydroxylation of Triquinacene and Its Derivatives:Âall-exo-Hexahydroxytriquinaneâ€. Journal of Organic Chemistry, 1998, 63, 2544-2547.	3.2	10
456	Synthesis of Biodegradable Amphiphilic Nanocarriers by Chemo-Enzymatic Transformations for the Solubilization of Hydrophobic Compounds. International Journal of Artificial Organs, 2011, 34, 84-92.	1.4	10
457	Hyperbranched polyglycerol supported ruthenium catalysts for ring-closing metathesis. Inorganica Chimica Acta, 2014, 409, 179-184.	2.4	10
458	Simple NIR complexes and their applicability in dye-sensitized solar cells. Polyhedron, 2014, 81, 583-587.	2.2	10
459	Hyperbranched glycerol-based core-amphiphilic branched shell nanotransporters for dermal drug delivery. Polymer, 2016, 96, 156-166.	3.8	10
460	Fullerene Polyglycerol Amphiphiles as Unimolecular Transporters. Langmuir, 2017, 33, 6595-6600.	3.5	10
461	Hyperbranched Polyglycerol-Induced Porous Silica Nanoparticles as Drug Carriers for Cancer Therapy Inâ€Vitro and Inâ€Vivo. ChemistryOpen, 2017, 6, 158-164.	1.9	10
462	Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials, 2018, 162, 60-70.	11.4	10
463	Linear dendronized polyols as a multifunctional platform for a versatile and efficient fluorophore design. Polymer Chemistry, 2018, 9, 2040-2047.	3.9	10
464	Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells, 2020, 9, 2434.	4.1	10
465	Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density. Advanced Materials Interfaces, 2020, 7, 1902066.	3.7	10
466	Hydrophobicity of Self-Assembled Monolayers of Alkanes: Fluorination, Density, Roughness, and Lennard-Jones Cutoffs. Langmuir, 2021, 37, 13846-13858.	3.5	10
467	Structure and Dynamics of Supramolecular Polymers: Wait and See. ACS Macro Letters, 2022, 11, 711-715.	4.8	10
468	Multivalent, Biodegradable Polyglycerol Hydrogels. International Journal of Artificial Organs, 2011, 34, 118-122.	1.4	9

#	Article	IF	CITATIONS
469	Amphiphile replacement on carbon nanotube surfaces: Effect of aromatic groups on the interaction strength. Physica Status Solidi (B): Basic Research, 2011, 248, 2532-2535.	1.5	9
470	Effective Reversible Photoinduced Switching of Selfâ€Assembled Monolayers of Functional Imines on Gold Nanoparticles. ChemPhysChem, 2011, 12, 132-135.	2.1	9
471	Excitation characteristics of different energy transfer in nanotube-perylene complexes. Applied Physics Letters, 2013, 102, .	3.3	9
472	Visualization of Realâ€Time Degradation of pHâ€Responsive Polyglycerol Nanogels via Atomic Force Microscopy. Macromolecular Rapid Communications, 2014, 35, 2018-2022.	3.9	9
473	Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection. Beilstein Journal of Organic Chemistry, 2015, 11, 763-772.	2.2	9
474	Optimized effective charge density and size of polyglycerol amines leads to strong knockdown efficacy in vivo. Journal of Materials Chemistry B, 2015, 3, 8993-9000.	5.8	9
475	Stimuliâ€Responsive Core Multishell Dendritic Nanocarriers. Macromolecular Chemistry and Physics, 2017, 218, 1600525.	2.2	9
476	Synthesis of a Cylindrical Micelle from Hydrophilic Polymers Connected with a Single Supramolecular Structure-Directing Unit. Macromolecules, 2020, 53, 7044-7052.	4.8	9
477	Protein aggregation nucleated by functionalized dendritic polyglycerols. Polymer Chemistry, 2020, 11, 3849-3862.	3.9	9
478	Grapheneâ€Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. Advanced Functional Materials, 2021, 31, 2009003.	14.9	9
479	Biodegradable Dendritic Polyglycerol Sulfate for the Delivery and Tumor Accumulation of Cytostatic Anticancer Drugs. ACS Biomaterials Science and Engineering, 2021, 7, 2569-2579.	5.2	9
480	Oligo-glycerol based non-ionic amphiphilic nanocarriers for lipase mediated controlled drug release. RSC Advances, 2020, 10, 37555-37563.	3.6	9
481	Bispecific Antibodies for Targeted Delivery of Dendritic Polyglycerol (dPG) Prodrug Conjugates. Current Cancer Drug Targets, 2016, 16, 639-649.	1.6	9
482	A Nanohookâ€Equipped Bionanocatalyst for Localized Nearâ€Infraredâ€Enhanced Catalytic Bacterial Disinfection. Angewandte Chemie, 2022, 134, e202113833.	2.0	9
483	Non-ionic hybrid detergents for protein delipidation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183958.	2.6	9
484	In-situ formation and detailed analysis of imine bonds forÂtheÂconstruction of conjugated aromatic monolayers onÂAu(111). Applied Physics A: Materials Science and Processing, 2008, 93, 293-301.	2.3	8
485	Sizeâ€Tunable Micronâ€Bubbles Based on Fluorous–Fluorous Interactions of Perfluorinated Dendritic Polyglycerols. ChemPhysChem, 2010, 11, 2617-2622.	2.1	8
486	Chirally enhanced solubilization through peryleneâ€based surfactant. Physica Status Solidi (B): Basic Research, 2012, 249, 2465-2468.	1.5	8

#	Article	IF	CITATIONS
487	Core-shell nanocarriers based on PEGylated hydrophobic hyperbranched polyesters. European Polymer Journal, 2016, 80, 158-168.	5.4	8
488	Antifouling coatings on SOI microring resonators for bio sensing applications. Sensors and Actuators B: Chemical, 2016, 223, 400-405.	7.8	8
489	Multivalente Peptidâ€Nanopartikelâ€Konjugate zur Hemmung des Influenzavirus. Angewandte Chemie, 2017, 129, 6025-6030.	2.0	8
490	Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles. Zeitschrift Fur Physikalische Chemie, 2018, 232, 819-844.	2.8	8
491	Protease-mediated Inflammation: An <i>In Vitro</i> Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems. Zeitschrift Fur Physikalische Chemie, 2018, 232, 919-933.	2.8	8
492	Hyperbranched Polyglycerol Derivatives as Prospective Copper Nanotransporter Candidates. Molecules, 2018, 23, 1281.	3.8	8
493	Expanding the Scope of Reporting Nanoparticles: Sensing of Lipid Phase Transitions and Nanoviscosities in Lipid Membranes. Langmuir, 2019, 35, 11422-11434.	3.5	8
494	Design and Synthesis of PEG-Oligoglycerol Sulfates as Multivalent Inhibitors for the Scavenger Receptor LOX-1. Biomacromolecules, 2019, 20, 1157-1166.	5.4	8
495	The Application of Dual‣ayer, Musselâ€Inspired, Antifouling Polyglycerolâ€Based Coatings in Ventricular Assist Devices. Advanced Materials Interfaces, 2020, 7, 2000272.	3.7	8
496	Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells. Nanoscale, 2020, 12, 24006-24019.	5.6	8
497	Non-ionic PEG-oligoglycerol dendron conjugated nano-carriers for dermal drug delivery. International Journal of Pharmaceutics, 2020, 580, 119212.	5.2	8
498	Wechselwirkung von Polyelektrolytâ€Architekturen mit Proteinen und Biosystemen. Angewandte Chemie, 2021, 133, 3926-3950.	2.0	8
499	Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. Materials Science and Engineering C, 2021, 119, 111578.	7.3	8
500	Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays. Soft Matter, 2021, 17, 7260-7267.	2.7	8
501	Amphiphilic Co-polypeptides Self-Assembled into Spherical Nanoparticles for Dermal Drug Delivery. ACS Applied Nano Materials, 2021, 4, 6709-6721.	5.0	8
502	Polyglycerolâ€Based Mucusâ€Inspired Hydrogels. Macromolecular Rapid Communications, 2021, 42, e2100303.	3.9	8
503	Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases. Pharmaceutics, 2021, 13, 37.	4.5	8
504	Synthesis and functionalization of dendritic polyglycerol-based nanogels: application in T cell activation. Journal of Materials Chemistry B, 2021, 10, 96-106.	5.8	8

#	Article	IF	CITATIONS
505	Optimization of Long-Term Human iPSC-Derived Spinal Motor Neuron Culture Using a Dendritic Polyglycerol Amine-Based Substrate. ASN Neuro, 2022, 14, 175909142110733.	2.7	8
506	Imidazole and Dimethyl Aminopropylâ€Functionalized Hyperbranched Polymers for Nucleic Acid Transfection. Macromolecular Bioscience, 2010, 10, 1055-1062.	4.1	7
507	Selective Endothelial Cell Adhesion via Mussel-Inspired Hybrid Microfibrous Scaffold. ACS Applied Nano Materials, 2018, 1, 1513-1521.	5.0	7
508	Synthesis of non-ionic and enzyme-responsive bolaamphiphiles for drug delivery applications. European Polymer Journal, 2018, 109, 506-522.	5.4	7
509	Dropletâ€Based Microfluidic Templating of Polyglycerolâ€Based Microgels for the Encapsulation of Cells: A Comparative Study. Macromolecular Bioscience, 2018, 18, e1800116.	4.1	7
510	White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake. Zeitschrift Fur Physikalische Chemie, 2018, 232, 671-688.	2.8	7
511	Switchable Solubility of Azobenzeneâ€Based Bolaamphiphiles. ChemPhysChem, 2019, 20, 1690-1697.	2.1	7
512	Serine Protease-Mediated Cutaneous Inflammation: Characterization of an Ex Vivo Skin Model for the Assessment of Dexamethasone-Loaded Core Multishell-Nanocarriers. Pharmaceutics, 2020, 12, 862.	4.5	7
513	Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid and Polymer Science, 2020, 298, 719-733.	2.1	7
514	Prolonged activity of exenatide: Detailed comparison of Site-specific linear polyglycerol- and poly(ethylene glycol)-conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 105-113.	4.3	7
515	Tunable Polyglycerol-Based Redox-Responsive Nanogels for Efficient Cytochrome C Delivery. Pharmaceutics, 2021, 13, 1276.	4.5	7
516	Coâ€Delivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrugâ€Resistant Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100233.	4.1	7
517	Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4. Journal of Pharmaceutical Sciences, 2022, 111, 1642-1651.	3.3	7
518	A Metalâ€Ionâ€Incorporated Musselâ€Inspired Poly(Vinyl Alcohol)â€Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
519	Supramolecular Engineering of Alkylated, Fluorinated, and Mixed Amphiphiles. Macromolecular Rapid Communications, 2022, 43, e2100914.	3.9	7
520	Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a. Journal of Controlled Release, 2022, 348, 881-892.	9.9	7
521	Secondary and primary relaxations in hyperbranched polyglycerol: A comparative study in the frequency and time domains. Journal of Chemical Physics, 2007, 127, 124904.	3.0	6
522	Polyglycerolâ€Tagged Molecular Clips as Receptors in Protic Solvents. European Journal of Organic Chemistry, 2013, 2013, 362-367.	2.4	6

#	Article	IF	CITATIONS
523	Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer Microspheres. International Journal of Molecular Sciences, 2015, 16, 20183-20194.	4.1	6
524	Biodistribution, cellular localization, and in vivo tolerability of 35S-labeled antiinflammatory dendritic polyglycerol sulfate amine. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	6
525	Chiral selectivity of polyglycerol-based amphiphiles incorporating different aromatic cores. Physica Status Solidi (B): Basic Research, 2015, 252, 2536-2540.	1.5	6
526	Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs. Polymers, 2016, 8, 192.	4.5	6
527	Heterobifunctional Dyes: Highly Fluorescent Linkers Based on Cyanine Dyes. ChemistryOpen, 2017, 6, 437-446.	1.9	6
528	Lipase-mediated synthesis of sugar–PEG-based amphiphiles for encapsulation and stabilization of indocyanine green. RSC Advances, 2017, 7, 37534-37541.	3.6	6
529	Positiv geladene Nanoaggregate auf Basis eines zwitterionischen Pillar[5]arens zur Bekäpfung von planktonischen Bakterien und zum Abbau von Biofilmen. Angewandte Chemie, 2019, 131, 3684-3688.	2.0	6
530	Bioinspired Confinement of Upconversion Nanoparticles for Improved Performance in Aqueous Solution. Journal of Physical Chemistry C, 2020, 124, 28623-28635.	3.1	6
531	Stereochemistryâ€Controlled Supramolecular Architectures of New Tetrahydroxyâ€Functionalised Amphiphilic Carbocyanine Dyes. Chemistry - A European Journal, 2020, 26, 6919-6934.	3.3	6
532	Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction. Journal of Materials Science and Technology, 2021, 68, 160-171.	10.7	6
533	Newer Nonâ€ionic A ₂ B ₂ â€Type Enzymeâ€Responsive Amphiphiles for Drug Delivery. ChemMedChem, 2021, 16, 1457-1466.	3.2	6
534	Responsive Emulsions for Sequential Multienzyme Cascades. Angewandte Chemie, 2021, 133, 8491-8495.	2.0	6
535	Characterization of an ester-based core-multishell (CMS) nanocarrier for the topical application at the oral mucosa. Clinical Oral Investigations, 2021, 25, 5795-5805.	3.0	6
536	Thermoresponsive Hydrogels as Microniches for Growth and Controlled Release of Induced Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2010630.	14.9	6
537	Chemoenzymatic Cascades Enabled by Combining Catalytically Active Emulsions and Biocatalysts. ChemCatChem, 2022, 14, .	3.7	6
538	Polyanionic Amphiphilic Dendritic Polyglycerols as Broad-Spectrum Viral Inhibitors with a Virucidal Mechanism. Biomacromolecules, 2022, 23, 983-991.	5.4	6
539	Catalysts on Functionalized Polymer Chips (PC) as Recyclable Entities. Synthesis, 2005, 2005, 3362-3372.	2.3	5
540	Inhibition of influenza virus activity by newly designed multivalent glycoarchitectures. Journal of Controlled Release, 2010, 148, e114-e115.	9.9	5

#	Article	IF	CITATIONS
541	Computational entropy estimation of linear polyether-modified surfaces and correlation with protein resistant properties of such surfaces. Molecular Simulation, 2011, 37, 899-906.	2.0	5
542	Dendronylation: Residue-specific chemoselective attachment of oligoglycerol dendrimers on proteins with noncanonical amino acids. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5247-5249.	2.2	5
543	Chemoâ€enzymatic synthesis of dendronized polymers for cyanine dye encapsulation. Advances in Polymer Technology, 2018, 37, 1797-1805.	1.7	5
544	Chemoenzymatic Synthesis of D-Glucitol-Based Non-Ionic Amphiphilic Architectures as Nanocarriers. Polymers, 2020, 12, 1421.	4.5	5
545	Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angewandte Chemie, 2020, 132, 12517-12522.	2.0	5
546	Reusable biopolymer based heavy metal filter as plant protection for phytoremediation. Environmental Technology and Innovation, 2020, 19, 101005.	6.1	5
547	Reversible Photothermal Homogenization of Fluorous Biphasic Systems with Perfluoroalkylated Nanographene. ACS Applied Nano Materials, 2020, 3, 1139-1146.	5.0	5
548	A Cyanineâ€Bridged Somatostatin Hybrid Probe for Multimodal SSTR2 Imaging in Vitro and in Vivo: Synthesis and Evaluation. ChemBioChem, 2021, 22, 1307-1315.	2.6	5
549	Topical Delivery of Rapamycin by Means of Microenvironment-Sensitive Core-Multi-Shell Nanocarriers: Assessment of Anti-Inflammatory Activity in an ex vivo Skin/T Cell Co-Culture Model. International Journal of Nanomedicine, 2021, Volume 16, 7137-7151.	6.7	5
550	"Raspberry―Hierarchical Topographic Features Regulate Human Mesenchymal Stem Cell Adhesion and Differentiation via Enhanced Mechanosensing. ACS Applied Materials & Interfaces, 2021, 13, 54840-54849.	8.0	5
551	Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture. ASN Neuro, 2022, 14, 175909142110732.	2.7	5
552	Synthesis and Linkerâ€Controlled Selfâ€Assembly of Dendritic Amphiphiles with Branched Fluorinated Tails. Macromolecular Bioscience, 2022, 22, .	4.1	5
553	Reversible electron-induced <i>cis</i> – <i>trans</i> isomerization mediated by intermolecular interactions. Journal of Physics Condensed Matter, 2012, 24, 394016.	1.8	4
554	Preparation of graphene oxide by cyanuric chloride as an effective and non-corrosive oxidizing agent. RSC Advances, 2016, 6, 115055-115057.	3.6	4
555	A Simple and Robust Method to Prepare Polyelectrolyte Brushes on Polymer Surfaces. Advanced Materials Interfaces, 2022, 9, .	3.7	4
556	Hydroquinone-functionalized cyanine dye as reduction-sensitive probe for imaging of biological reducing species. Dyes and Pigments, 2022, 201, 110198.	3.7	4
557	α- and β-oxygenated aldehydes derived from Diels–Alder reactions as substrates for hydroxynitrile Iyases. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 268-273.	1.8	3
558	Dendritic HMPA as a Promoter for the Mukaiyama Aldol and Allylation Reaction. Synlett, 2012, 23, 2672-2676.	1.8	3

#	Article	IF	CITATIONS
559	Coreâ€multishell nanotransporters enhance skin penetration of the cellâ€penetrating peptide low molecular weight protamine. Polymers for Advanced Technologies, 2014, 25, 1337-1341.	3.2	3
560	Synthesis and comparison of linear and hyperbranched multivalent glycosides for C-type lectin binding. New Journal of Chemistry, 2019, 43, 16012-16016.	2.8	3
561	Novel Antimicrobial Cellulose Fleece Inhibits Growth of Human-Derived Biofilm-Forming Staphylococci During the SIRIUS19 Simulated Space Mission. Frontiers in Microbiology, 2020, 11, 1626.	3.5	3
562	Surfaceâ€Initiated Grafting of Dendritic Polyglycerol from Musselâ€Inspired Adhesionâ€Layers for the Creation of Cellâ€Repelling Coatings. Advanced Materials Interfaces, 2020, 7, 2000931.	3.7	3
563	Gram Scale Synthesis of Dual-Responsive Dendritic Polyglycerol Sulfate as Drug Delivery System. Polymers, 2021, 13, 982.	4.5	3
564	Grapheneâ€Based Bacterial Filtration via Electrostatic Adsorption. Advanced Materials Interfaces, 0, , 2101917.	3.7	3
565	Preclinical Testing of Dendritic Core–Multishell Nanoparticles in Inflammatory Skin Equivalents. Molecular Pharmaceutics, 2022, 19, 1795-1802.	4.6	3
566	Synthesis of <scp>d</scp> â€ <scp>glucitol</scp> based Gemini amphiphilic nanotransporters. Polymers for Advanced Technologies, 2022, 33, 2601-2609.	3.2	3
567	Chemische AnsÃæe für synthetische Wirkstofftransportsysteme für systemische Anwendungen. Angewandte Chemie, 2022, 134, .	2.0	3
568	Graphene Nanoinks: A Waterâ€Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870030.	21.0	2
569	Mg-Air Batteries: Atomic Fe-Nx Coupled Open-Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg-Air Batteries (Adv. Mater. 40/2018). Advanced Materials, 2018, 30, 1870303.	21.0	2
570	Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples. Zeitschrift Fur Physikalische Chemie, 2018, 232, 883-891.	2.8	2
571	Tailorâ€Made Coreâ€Multishell Nanocarriers for the Delivery of Cationic Analgesics to Inflamed Tissue. Advanced Therapeutics, 2019, 2, 1900007.	3.2	2
572	Exploring hydrophobic diastereomeric 2,6-anhydro-glycoheptitols for their enzymatic polymerization with PEG: towards delivery applications. New Journal of Chemistry, 2020, 44, 15369-15375.	2.8	2
573	Chemically defined stem cell microniche engineering by microfluidics compatible with iPSCs' growth in 3D culture. Biomaterials, 2021, 280, 121253.	11.4	2
574	Glycosylated MoS ₂ Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size. Advanced Materials Interfaces, 2022, 9, .	3.7	2
575	supported by the Office of Navai Research, the Defense Advanced Research Project Agency, and the National Science Foundation ECS-97294053. R.E.H. thanks the National Institutes of Health for a postdoctoral fellowship, and R.H. thanks the Deutsche Forschungsgemeinschaft and the BASF fellowship program for financial support. We thank Andreas Terfort for the synthesis of aromatic	13.8	2
576	thiols. Collaboration between Caracas and, Angewandte Chemie - International Edition, 2001, 40, Cover Picture: Supramolecular Aggregates of Dendritic Multishell Architectures as Universal Nanocarriers (Angew. Chem. Int. Ed. 8/2007). Angewandte Chemie - International Edition, 2007, 46, 1189-1189.	13.8	1

#	Article	IF	CITATIONS
577	Thiocyanateâ€Free versus Thiocyanate ontaining Dyes for TiO ₂ â€Based Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2014, 1, 1656-1661.	3.4	1
578	Aggregation of Amphiphilic Carbocyanines: Fluorination Favors Cylindrical Micelles over Bilayered Tubes. Journal of Physical Chemistry B, 2021, 125, 10538-10550.	2.6	1
579	Scaffold Flexibility Controls Binding of Herpes Simplex Virus Type 1 with Sulfated Dendritic Polyglycerol Hydrogels Fabricated by Thiolâ€Maleimide Click Reaction. Macromolecular Bioscience, 2022, 22, e2100507.	4.1	1
580	Novel Adhesive Nanocarriers Based on Mussel-Inspired Polyglycerols for the Application onto Mucosal Tissues. Pharmaceutics, 2022, 14, 940.	4.5	1
581	Genz: Symmetrie – Bauplan der Natur/Maturana, Varela: Der Baum der Erkenntnis/Dieudonné: Geschichte der Mathematik 1700–1900. Ein Abriß/Müller: Fritz Zwicky: Leben und Werk des großen Schweizer Astrophysikers, Raketenforschers und Morphologen (1898â€1974)/Taylor: Tributes to Paul Dirac/Giovanelli: Geheimnisvolle Sonne. Physik Iournal. 1987. 43. 382-383.	0.1	0
582	Solare Chemie und Materialforschung. Nachrichten Aus Der Chemie, 1995, 43, 1300-1301.	0.0	0
583	Stehle: Order, Chaos, Order/Kafka: Gegen den Untergang/Verhulst: Der Glanz von Kopenhagen/Luchner: Physik ist überall: Streifzüge durch Natur, Alltag, Technik und Forschung/Omnès: The Interpretation of Quantum Mechanics/Neuser: Natur und Begriff/Vogel: Ge. Physik lournal. 1996. 52. 55-60.	0.1	0
584	Cover Picture: Angew. Chem. Int. Ed. 21/2002. Angewandte Chemie - International Edition, 2002, 41, 3927-3927.	13.8	0
585	OberflÄ c henfunktionalisierte Polymere als TrÄ g er fļr chirale Katalysatoren - Anwendung in der asymmetrischen Transferhydrierung. Chemie-Ingenieur-Technik, 2010, 82, 1324-1324.	0.8	0
586	Macromol. Biosci. 12/2011. Macromolecular Bioscience, 2011, 11, 1735-1735.	4.1	0
587	Inside Cover: Inhibition of Influenza Virus Activity by Multivalent Glycoarchitectures with Matched Sizes (ChemBioChem 6/2011). ChemBioChem, 2011, 12, 814-814.	2.6	0
588	Back Cover: Macromol. Biosci. 8/2014. Macromolecular Bioscience, 2014, 14, 1354-1354.	4.1	0
589	The effects of polyglycerol sulfate-based hydrogels with tunable mechanical integrity on cartilage regeneration in osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, S159.	1.3	0
590	Hooking on Viral Glycoproteins with Single Molecule Force Spectroscopy to Study Single and Multiple Bond Formations. Biophysical Journal, 2019, 116, 428a.	0.5	0
591	Supramolecular polymerization of sulfated dendritic peptide amphiphiles into multivalent L-selectin binders. Beilstein Journal of Organic Chemistry, 2021, 17, 97-104.	2.2	0
592	Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARSâ€CoVâ€2â€Infektion**. Angewandte Chemie, 2021, 133, 16005-16014.	2.0	0
593	A Metalâ€Ionâ€Incorporated Musselâ€Inspired Poly(Vinyl Alcohol)â€Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angewandte Chemie, 0, , .	2.0	0